
MATH 421 Applied Analysis (Bueler) December 17, 2011

Solutions to Take-home Final Exam

Lesson 24, #7. Solution. The application of Leibniz rule is slightly simplified by having the integrand
φ(s) not depend on the variable t, with respect to which we are differentiating. Thus with ∂F/∂t = 0 and
f(t) = x− ct and g(t) = x+ ct, we get

d

dt

(
1

2c

∫ x+ct

x−ct
φ(s) ds

)
=

1

2c

(
0 + cφ(x+ ct)− (−c)φ(x− ct)

)
=

1

2
φ(x+ ct) +

1

2
φ(x− ct).

This calculation is part of showing that D’Alembert’s solution (17.8) giving u(x, t), wherein φ is called
g, actually solves the full wave equation problem including the initial condition ut(x, 0) = g(x). In fact, the
result above simplifies to φ(x) when we substitute t = 0.

Lesson 31, #2. Solution. This one is too easy:

utt = α2

(
urr +

1

r
ur

)
.

E1. (a). Solution. The separated solution is u(x, t) = X(x)T (t). The parts solve ODEs

X ′′ + λ2X = 0, T ′ = −λ2T.

The eigenproblem is
X ′′ + λ2X = 0, X ′(0) = 0, X ′(L) = 0

which has solutions λn = nπ/L, Xn(x) = cos(nπx/L), n = 1, 2, 3, . . . . The associated time-dependent
solutions are Tn(t) = Ane

−n2π2t/L2

. The general solution is

u(x, t) =

∞∑
n=1

Ane
−n2π2t/L2

cos(nπx/L).

The initial condition requires

e−x = u(x, 0) =

∞∑
n=1

An cos(nπx/L)

for 0 < x < L.
Line 9 in Table E in the back of the book says that on 0 < y < π we have

eay =
2a

π

[
eaπ − 1

2a2
+
∞∑
n=1

(−1)neaπ − 1

n2 + a2
cos(ny)

]
.

Substituting y = πx/L for 0 < x < L gives

eaπx/L =
2a

π

[
eaπ − 1

2a2
+

∞∑
n=1

(−1)neaπ − 1

n2 + a2
cos(πnx/L)

]
.

Now let aπ/L = −1 or a = −L/π to get

e−x =
−2L

π2

[
e−L − 1

2L2/π2
+

∞∑
n=1

(−1)ne−L − 1

n2 + (L/π)2
cos(πnx/L)

]

= −2L

[
e−L − 1

2L2
+

∞∑
n=1

(−1)ne−L − 1

π2n2 + L2
cos(πnx/L)

]

=
1− e−L

L
+ 2L

∞∑
n=1

1− (−1)ne−L

π2n2 + L2
cos(πnx/L)
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on 0 < x < L as desired. Thus

u(x, t) =
1− e−L

L
+ 2L

∞∑
n=1

1− (−1)ne−L

π2n2 + L2
e−n

2π2t/L2

cos(πnx/L).

(b). Solution. Let U(ξ, t) = F [u]. Then by properties of Fourier transform

Ut(ξ, t) = −ξ2U(ξ, t).

and U(ξ, 0) = Φ(ξ) = F [φ]. This is an ODE IVP for each ξ.
Recalling φ(x) = e−|x|, by line 7 of Table A,

Φ(ξ) =

√
2

π

1

1 + ξ2
.

Therefore the solution of these ODE IVPs is

U(ξ, t) =

√
2

π

e−ξ
2t

1 + ξ2
.

The inverse Fourier transform we want now is the integral

u(x, t) =
1√
2π

∫ ∞
−∞

√
2

π

e−ξ
2t

1 + ξ2
eixξ dξ =

1

π

∫ ∞
−∞

e−ξ
2t+ixξ

1 + ξ2
dξ.

But this problem seems to be too hard to do directly.
On the other hand, the book gives formula (12.9), which in our case is

u(x, t) =
1

2
√
πt

∫ ∞
−∞

e−|y|e−(x−y)
2/(4t) dy.

Consider the integral in two halves and use the hint distributed by email:∫ ∞
0

e−ye−(x−y)
2/(4t) dy =

√
πt et−x erfc

(
− x

2
√
t

+
√
t

)
,∫ 0

−∞
e+ye−(x−y)

2/(4t) dy =
√
πt et+x erfc

(
+

x

2
√
t

+
√
t

)
.

Thus

u(x, t) =
1

2
et+x erfc

(
+

x

2
√
t

+
√
t

)
+

1

2
et−x erfc

(
− x

2
√
t

+
√
t

)
.

(c). Solution. There are two key ideas here:

• On the interval [0, L] the initial conditions are the same, namely u(x, 0) = e−x, and therefore the
solutions start with the “same first frame” if we restrict our view to [0, L].
• The boundary conditions in part (a) are insulating while the rod is infinitely long in part (b). Thus

over a long time we expect the solution in part (a) to approach a nonzero constant temperature,
while in part (b) we expect the temperature in the rod to go to zero everywhere.

I have posted a code that shows movies of the solutions to parts (a) and (b),
http://www.dms.uaf.edu/˜bueler/compareheat.m

Figure 1 shows three frames from that movie.

E2. (a). Solution. Applying F to the PDE we get

Utt(ξ, t) = −9ξ2U(ξ, t).

The solutions to these ODEs are

U(ξ, t) = A(ξ) cos(3ξt) +B(ξ) sin(3ξt).

http://www.dms.uaf.edu/~bueler/compareheat.m
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FIGURE 1. Solutions u(x, t) from parts (a) and (b) of E1 at times t = 0.01, 0.5, 20 in the case
where L = 3. Note that both parts agree with e−x on the interval [0, L] at the smallest time.
As time goes on, the fact that the boundary conditions in part (a) are insulating is revealed.

But the initial values are U(ξ, 0) = Φ(ξ) and Ut(ξ, 0) = 0. Thus A(ξ) = Φ(ξ) and B(ξ) = 0. Therefore

U(ξ, t) = Φ(ξ) cos(3ξt).

(b). Solution. Easy:

u(x, t) =
1

2
φ(x− 3t) +

1

2
φ(x+ 3t).

E3. (a). Solution. The equation is linear but variable coefficient. If λ = 0 then the equation is

x2y′′ + xy′ = 0

which simplifies to
xw′ + w = 0

with w = y′ as suggested. This is separable,

x
dw

dx
+ w = 0 ⇐⇒ dw

w
= −dx

x
.

Integrating gives
ln |w(x)| = − ln |x|+ C.

Exponentiating this and recalling we are only considering x > 0 gives

y′(x) = w(x) = Ae− ln x =
A

x

for A which is any nonzero real number. Integrating this gives

y(x) = A lnx+B.

This is the general solution.

(b). Solution. Now suppose λ > 0 and substitute xr for y, to get

x2r(r − 1)xr−2 + xrxr−1 − λ2xr = 0.

This simplifies to
r2 − λ2 = 0
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with solutions r = ±λ. That is, the general solution

y(x) = Axλ +Bx−λ.

(c). Solution. In Lesson 33 we seek the separated solutions u(r, θ) = R(r)Θ(θ) of the Laplacian equation
∇2u = 0 on the unit disc. The factor R(r) solves the Euler equation

r2R′′ + rR′ − λ2R = 0

where λ = n is the eigenvalue; note Θ(θ) is periodic and solves Θ′′ + λ2Θ = 0 so λ = n. The solutions ln r

and r−n are, however, unbounded at the center of the disc, r → 0. Thus we throw those away and keep the
solutions

R(r) =

{
A, n = 0,

Arn, n > 0,

but this formula simplifies to R(r) = Arn in all cases n = 0, 1, 2, 3, . . . .

E4. (a). Solution. If u(x, t) = X(x)T (t) then the PDE says

T ′′ + γT ′

α2T
= −λ2 =

X ′′

X

so the factors solve
T ′′ + γT ′ + α2λ2T = 0, X ′′ + λ2X = 0

for λ unknown.

(b). Solution. The eigenvalue problem is

X ′′ + λ2X = 0, X(0) = 0, X(1) = 0.

Thus
λn = nπ, Xn(x) = sin(nπx), n = 1, 2, 3, . . .

(c). Solution. We now return to the equation for T (t) and solve this constant-coefficient ODE,

Tn(t) = ezt =⇒ z2 + γz + α2n2π2 = 0.

Thus

z =
−γ ±

√
γ2 − 4α2n2π2

2
where n = 1, 2, 3, . . .

But what is the sign of “γ2−4α2n2π2” in the square root? We are told to assume γ < απ so γ2−α2π2 < 0.
Thus γ2 − 4α2n2π2 < 0 for n ≥ 1. Therefore we may write

z = −γ
2
± i
√

4α2n2π2 − γ2
2

.

Let

ζn =

√
4α2n2π2 − γ2

2
.

Then
Tn(t) = e−γt/2 (an cos (ζnt) + bn sin (ζnt)) .

The general solution is

u(x, t) =

∞∑
n=1

e−γt/2 (an cos (ζnt) + bn sin (ζnt)) sin(nπx).

We want

sin(πx) = u(x, 0) =

∞∑
n=1

an sin(nπx)
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and

0 = ut(x, 0) = −γ
2

sin(πx) +

∞∑
n=1

bnζn sin(nπx).

By orthogonality, a1 = 1 and an = 0 for n ≥ 2, and b1 = γ/(2ζ1) while bn = 0 for n ≥ 2. Thus

u(x, t) = e−γt/2
(

cos (ζ1t) +
γ

2ζ1
sin (ζ1t)

)
sin(πx)

where ζ1 =
√

4α2π2 − γ2/2. Yes, you can check this solves all parts of the problem!

E5. (a). Solution. Because f(x) = |x| is even, a Fourier cosine series is needed. From Table E in the back
of the book,

|x| = π

2
−
∞∑
k=0

4

π(2k + 1)2
cos((2k + 1)x).

Thus the discrete spectrum has

c0 =
π

2
, c2l = 0, c2k+1 =

4

π(2k + 1)2
,

where l = 1, 2, 3, . . . and k = 0, 1, 2, 3, . . .

(b). Solution. For this function we compute the classical Fourier series

ex =
a0
2

+

∞∑
n=1

[an cos(nx) + bn sin(nx)]

where

an =
1

π

∫ π

−π
ex cos(nx) dx, bn =

1

π

∫ π

−π
ex sin(nx) dx.

Clearly we must do integrations by parts, giving:

an =
1

π

∫ π

−π
ex cos(nx) dx =

(−1)n(eπ − e−π)

π(n2 + 1)
, n = 0, 1, 2, 3, . . .

bn =
1

π

∫ π

−π
ex sin(nx) dx =

−(−1)nn(eπ − e−π)

π(n2 + 1)
, n = 1, 2, 3, . . .

Thus

c0 =
eπ − e−π

π
and cn =

(eπ − e−π)

π
√
n2 + 1

, n = 1, 2, 3, . . .

The figures for the two parts are easy to draw and therefore omitted. Note that in the first case the
coefficients decay like O(n−2) as n → ∞, because f(x) has a continuous periodic extension, while in the
second case the coefficients decay only like O(n−1) because the periodic extension is discontinuous.

E6. Solution. We separate variables u(x, y) = X(x)Y (y) and get this equation

X ′′Y +XY ′′ + λ2XY = 0,

which splits as
X ′′ + λ2X

X
= µ2 =

−Y ′′

Y
for some unknown constant µ. The boundary conditions give this eigenvalue problem for Y ,

Y ′′ + µ2Y = 0, Y (0) = 0, Y (1) = 0,

because u = 0 on the boundary of the square. This familiar eigenvalue problem has the familiar solution

Yn(y) = sin(nπy), µn = nπ, n = 1, 2, 3, . . .
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Now we return to the ODE problem for X(x) and solve it. Again it is an eigenvalue problem, this
time for eigenvalue λ. The ODE is X ′′ + λ2X = n2π2X or equivalently X ′′ + (λ2 − n2π2)X = 0. The full
eigenproblem is

X ′′ + (λ2 − n2π2)X = 0, X(0) = 0, X(1) = 0,

again because u = 0 on the boundary of the square. We have

Xm(x) = sin(mπx)

for m = 1, 2, 3, . . . and where λ2 − n2π2 = m2π2. Thus

λ = λm,n = π
√
m2 + n2

over all pairs (m,n) with m = 1, 2, 3, . . . and n = 1, 2, 3, . . . A bit of thought shows that this last formula
for λ must treat m and n symmetrically, because the original problem treated x and y symmetrically.

The solutions to the original eigenfunction problem are

um,n(x, y) = sin(mπx) sin(nπx)

with λ = λm,n already given.

Extra Credit 1. Solution. I wrote a program which is posted online:
http://www.dms.uaf.edu/˜bueler/squaredrums.m

It generates Figure 2.

Extra Credit 2. Solution. No, you cannot hear the shape of a drum. Google “can you hear the shape of a
drum?”; the ease of doing this is why this is a one-credit extra credit problem.

Note that the problem solved in Lecture 30, and the problem solved above in E6, give different se-
quences of eigenvalues. These eigenvalues are the tones generated by the drumheads, one round and one
square. Any sound from these drums is a linear combination of these frequencies. Yes, you can hear the dif-
ference between a round drum and a square drum, because of the differences in these sequences. You can
hear the difference between a round drum and a square drum even if they have the same area. Generally,
also, you can hear the difference in the boundary length of drums if they have the same area.

But what if the drums have the same area and boundary length? Could two such drums have actu-
ally different shapes but sound the same. This was an open mathematical question from the time of the
publication of this paper,

Kac, Mark (1966), Can one hear the shape of a drum?, American Mathematical Monthly 73
(4, part 2) 1–23.

My guess is that most knowledgable mathematicians in the 1960s and 1970s would say “someday it will be
proven that you can hear the shape of a 2-dimensional drumhead”. But the problem was solved negatively,
as noted, in this paper

Gordon, C., Webb, D. L., and Wolpert, S. (1992), One cannot hear the shape of a drum, Bul-
letin of the American Mathematical Society 27 (1), 134–138

Here are two drum heads that sound the same, that is, they have all of the same eigenvalues λn solving
the Helmholtz-Dirichlet problem, namely∇2u+λ2u = 0, where u is zero on the boundary of the drumhead
(rim of the drum):

http://www.dms.uaf.edu/~bueler/squaredrums.m
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m=4, n=4

17.77153

m=4, n=3

15.70796

m=4, n=2

14.04963

m=4, n=1

12.95312

m=3, n=4

15.70796

m=3, n=3
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14.04963
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8.88577

m=2, n=1

7.02481

m=1, n=4

12.95312

m=1, n=3

9.93459

m=1, n=2

7.02481

m=1, n=1

00.20.40.60.81
x

00.20.40.60.81

y

4.44288

FIGURE 2. The first sixteen eigenfunctions for the Laplacian on a unit square, with their
associated values of λm,n = π

√
m2 + n2. These are um,n(x, y) for m = 1, 2, 3, 4 and n =

1, 2, 3, 4 from the solution to E6.

FIGURE 3. Two drumheads that sound exactly the same.


