December 6, 2011

Take-home Final Exam

100 points total

Due Thursday 15 December, 2011 at 5pm.

Rules. You *may* use written and published references for basic facts including trigonometric identities and integrals, but you should indicate clearly when doing so; *cite*! You *may* use the textbook. You *may* use MATLAB and other calculation technology to produce plots and compute numbers. You *may* ask questions during class time about the content of the exam, so that you and all the other students hear the question and the response. You *may* talk to me in person or email me with questions at elbueler@alaska.edu.

You *may not* seek out complete solutions by searching online, in textbooks, or elsewhere. You *may not* talk to, or communicate with by any method, any person other than *me* about the content of this exam.

Please come to me with questions, including questions about these rules. I will be genuinely helpful and not obscure; I'll tell you when I have stopped revealing information so as to avoid giving an answer.

Lesson 24, # 7. (5 points)

Lesson 31, # 2. (5 points)

E1. (a) (10 points) Use separation of variables to solve this heat equation problem on $0 \le x \le L$:

PDE	$u_t = u_{xx}$
BCs	$u_x(0,t) = 0$ $u_x(L,t) = 0$
IC	$u(x,0) = e^{-x}$

Show all the major steps, even if they appear in the textbook.

(b) (10 points) Use Fourier transforms to solve this initial value problem for the heat equation on $-\infty < x < \infty$:

PDE	$u_t = u_{xx}$
IC	$u(x,0) = e^{- x }$

Show all the major steps, even if they appear in the textbook. (*Hint*: You may use a table of Fourier transforms.)

(c) (5 points) Assume L = 2 for concreteness. Compare the solutions above by plotting them both on the interval $0 \le x \le L$. In particular, for both part (a) and part (b) sketch the solutions u(x,t) at t = 0, at a small time t > 0, and at a large time t > 0. *Clearly* label. Expect to lose points if your plots are hard to understand, vague, or messy. (*Hint*: Pay attention to what boundary conditions apply and what are the effects of these. Also, what survives for a long time?)

E2. (a) (5 points) Consider the initial value problem for the wave equation on $-\infty < x < \infty$:

PDE
$$u_{tt} = 9u_{xx}$$

ICs $u(x,0) = \phi(x)$
 $u_t(x,0) = 0$

where $\phi(x)$ is some function for which $\int_{-\infty}^{\infty} |\phi(x)|^2 dx < \infty$, and where u = u(x, t) (as usual). We can apply the Fourier transform to this problem. In fact, define

 $U(\xi, t) = \mathcal{F}[u], \qquad \Phi(\xi) = \mathcal{F}[\phi],$

and show that

$$U(\xi, t) = \Phi(\xi) \cos(3\xi t).$$

Show all significant steps of the calculation. (*Hint*: To start, just apply \mathcal{F} to both sides of the PDE, and follow your nose. *Note*: The reason we do not proceed from the form $U(\xi, t) = \Phi(\xi) \cos(3\xi t)$ to a complete solution is that the inverse Fourier transform $\mathcal{F}^{-1}[\cos(3\xi t)]$ is not defined, using the tools presented in this class and textbook.)

(b) (5 points) What is D'Alembert's solution to the problem in part (a)?

E3. Consider Euler's equation

$$x^2y'' + xy' - \lambda^2 y = 0,$$

which is an ODE for y(x). We will only consider x > 0 here.

(a) (5 points) Is this equation linear? Is it constant-coefficient? Find the general solution in the case $\lambda = 0$. (*Hint*: The substitution w(x) = y'(x) may be helpful.)

(b) (5 *points*) Find all solutions of the form $y(x) = x^r$ in the case $\lambda > 0$, and then find the general solution.

(c) (*5 points*) Write at least three clear, well-considered sentences describing how Euler's equation arises in Lesson 33, what role it plays in finding the solution, and which solutions are kept, and why.

E4. (a) (*5 points*) Apply separation of variables to this PDE, a transmission line equation (see Lesson 16):

PDE
$$u_{tt} + \gamma u_t = \alpha^2 u_{xx}.$$

In particular, write down the ODEs solved by each factor of the separated form of the solution u(x, t). Assume in this part, and below, that $\gamma \ge 0$ and $\alpha > 0$.

(b) (*5 points*) State and fully solve the eigenvalue problem associated to this PDE initial/boundary value problem:

PDE	$u_{tt} + \gamma u_t = \alpha^2 u_{xx}$
BCs	$\begin{aligned} u(0,t) &= 0\\ u(1,t) &= 0 \end{aligned}$
ICs	$u(x,0) = \sin(\pi x)$ $u_t(x,0) = 0$

(c) (10 points) Solve the initial/boundary value problem stated in part (b). You may assume, at any point you need this fact, that $\gamma < \pi \alpha$, so γ is not big.

E5. Graph the discrete frequency spectrum of these periodic functions. Put at least 10 reasonably-accurate points on each spectrum graph. Regard these functions as having the given formula on $(-\pi, \pi)$, and suppose they repeat periodically with period 2π . (*Hint*: "Discrete frequency spectrum" is defined in **Lesson 11**.)

(a) (5 points)
$$f(x) = |x|$$

(b) (5 points) $f(x) = e^x$

E6. (10 points) Consider the Laplacian on the square 0 < x < 1, 0 < y < 1, namely $\nabla^2 u = u_{xx} + u_{yy}$. Use separation of variables to solve the eigenfunction problem

$$\nabla^2 u + \lambda^2 u = 0$$

assuming the value of *u* on the boundary of the square is always zero.

(Extra Credit 1) (*3 points*) Write a computer program that shows, for this square, the drumheads analogous to the disc case shown in Figure 30.3 in Lesson 30. In particular, show at least 16 drumhead modes.

(Extra Credit 2) (*1 points*) (*For this problem you may, and surely you must, search online for information.*) Can you hear the shape of a drum? Draw two drumheads which answer this question.