
Math 310 Numerical Analysis, Fall 2010 (Bueler) December 10, 2010

Solutions to Assignment #8

1. As shown in the example in section 4.5, the first three results are the composite trapezoid

rule with n = 1, 2, 4 subintervals:

R1,1 =
1

2
[f(0) + f(1)] = 0.183939720585721,

R2,1 =
1

4
[f(0) + 2f(0.5) + f(1)] = 0.16778619275694,

R3,1 =
1

8
[f(0) + 2f(0.25) + 2f(0.5) + 2f(0.75) + f(1)] = 0.162488405093166,

where f(x) = x2e−x dx is the integrand. I am keeping all computed digits because I know the

extrapolation in the Romberg technique will use these digits to get a much better answer.

To build the rest of the table requires the formula

Rk,j = Rk,j−1 +
1

4j−1 − 1
(Rk,j−1 −Rk−1,j−1) .

In particular,

R2,2 = R2,1 −
1

3
(R2,1 −R1,1) = 0.16778619275694,

R3,2 = R3,1 −
1

3
(R3,1 −R2,1) = 0.160722475871908,

R3,3 = R3,2 −
1

15
(R3,2 −R2,2) = 0.16061052869799.

The exact value comes from a standard integration-by-parts exercise, starting with this

calculation of the antiderivative:∫
x2e−x dx = −x2e−x+

∫
2xe−x dx = −x2e−x+2

(
−xe−x +

∫
e−x dx

)
= −(x2+2x+2)e−x+C

Thus the exact is:

I =

∫ 1

0
x2e−x dx = −(x2 + 2x+ 2)e−x

]1
0

= 0.160602794142788.

The absolute error is

|R3,3 − I| = 7.7× 10−6.

This is much better than the quality of R3,1, for which the absolute error is about 1.9× 10−3.

But it required the same total number of function evaluations, namely 5 evaluations of f(x).

By the way, what I entered at the Matlab/Octave command line to do this “by hand”

looked like:

>> format long g
>> f = @(x) x.ˆ2.*exp(-x);
>> R11 = 0.5*(f(0)+f(1))
R11 = 0.183939720585721
>> R21 = 0.25*(f(0)+2*f(0.5)+f(1))
R21 = 0.16778619275694
>> R31 = 0.125*(f(0)+2*f(0.25)+2*f(0.5)+2*f(0.75)+f(1))

2

R31 = 0.162488405093166
>> R22 = R21 + (1/3)*(R21-R11)
R22 = 0.162401683480679
>> R32 = R31 + (1/3)*(R31-R21)
R32 = 0.160722475871908
>> R33 = R32 + (1/15)*(R32-R22)
R33 = 0.16061052869799

2. See the code http://www.dms.uaf.edu/~bueler/buelerromberg.m online.

3. The first stage is to interpolate at equally-spaced points. Figure 1 shows the result. We

see that the N = 1, 2 cases are very inaccurate, while the N = 8, 16 cases are fairly close.

Thus it is not clear we should use the N = 1, 2 cases in the extrapolation, but that’s what the

instructions say so we will do it.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5 4

x

N=1 points
P1(x)

N=2 points
P2(x)

N=4 points
P4(x)

N=8 points
P8(x)

N=16 points
P16(x)

f(x)=cos(3x)

3.
14

15
9

Figure 1. Equally-spaced polynomial interpolation of f(x) = cos 3x for N =

1, 2, 4, 8, 16. The goal is to approximate PN (π).

(a) & (b) I wrote the following code, which uses the fact that we do not want the coeffi-

cients of any of the polynomials, but rather just their values at points—in one case we only

want PN (x) at xπ, and in another we want to approximate F (h) at h = 0. Thus the best

implementation surely uses Neville’s method, which never computes the coefficients. In fact I

would claim this is a good implemention of the proposed interpolation/extrapolation method,

but we see that the result is not very good. Note that f(π) = −1 exactly:

superinterp.m
% SUPERINTERP Attempt to build a super-interpolator by doing successive
% polynomial interpolation with equal spacing h, and then extrapolating
% to h=0. Uses Neville’s method (nev.m) for both stages.

http://www.dms.uaf.edu/~bueler/buelerromberg.m

3

xx = pi;
f = @(x) cos(3*x); % test it on a smooth fcn
a = 0; b = 4;

h = zeros(1,5); PNPI = zeros(1,5); % will extrapolate this data to h=0
for k = 1:5

N = 2ˆ(k-1); % N = 1,2,4,8,16
h(k) = (b - a) / N;
x = a:h(k):b;
y = f(x);
PNPI(k) = nev(xx,N,x,y); % P_N(pi)

end

result = nev(0,4,h,PNPI) % result = F(0) if F(h) = P_N(pi)
err = abs(result - f(pi))

>> superinterp
result = -1.39882302032546
err = 0.398823020325463

The resulting plot of the extrapolation problem, on h-versus-PN (π) axes, shows why the

result is not so good: the data which is to be extrapolated is very irregular and does not “trend

smoothly” toward our expected value.

-2

-1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4

P
N

(3
.1

41
59

)

h

Figure 2. The blue stars are the results of the earlier polynomial interpolation

stage, namely PN (π) for various N . These are considered as functions of h =

(b− a)/N . The extrapolation to h = 0 is not great, though!

4

c. This method would need to be tested on other examples to see if this one is unusually

bad. And we should write down Lagrange’ remainder term and see if there is a pattern. That

is, much more work is needed to give a numerical analysis of this method.

But so far it is not promising. The suggestion is that F (h) is very irregular even for this

smooth function, which causes the extrapolated value to be much worse than either the N = 8

or N = 16 values. The situation is much worse than the results we have seen for Romberg.

Of course integration is a safer task than extrapolation; for example consider the error terms

in Simpson’s rule versus that for n = 2 degree polynomial interpolation.

Regarding efficiency: The use of Neville’s method must mean there is not much waste. We

could decrease the number of function evaluations by a factor of two by generating the Neville

table line-by-line; this kind of thing is done in Romberg.

Also. You may be interested in how I made the figures:

showsuperinterp.m
% SHOWSUPERINTERP Generates two figures from SUPERINTERP data.
% One figure shows the points used in interpolation. Other figure
% shows the polynomial doing the extrapolation.

superinterp % run it; now "f", "a", "b", "h", "PNPI" are defined

set(0,’defaultlinelinewidth’,2.0,’defaultlinemarkersize’,14.0)
figure(1)
xp = a:(b-a)/1000:b;
for k = 1:5

N = 2ˆ(k-1); x = a:h(k):b; y = f(x);
s = [’o’ num2str(k) ’;N=’ num2str(N) ’ points;’]; % nested, colored circles
plot(x,y,s,’markersize’,4.0+3*(5-k+1)), hold on
s = [’-’ num2str(k) ’;P_{’ num2str(N) ’}(x);’]; % curve with same color
plot(xp,polyval(polyfit(x,y,N),xp),s)

end
yp = f(xp); plot(xp,yp,’k;f(x)=cos(3x);’)
legend(’location’,’south’)
plot([pi pi],[-2 1.5],’--k’,’linewidth’,1.0)
text(pi,-2.4,’3.14159’,’fontsize’,9.0,’rotation’,90.0)
axis([0 4 -2 1.5]), xlabel x, hold off
print -dpdf allpoints.pdf

figure(2), plot(h,PNPI,’*’), xlabel h, ylabel(’P_N(3.14159)’)
xp = 0:0.01:4; yp = polyval(polyfit(h,PNPI,4),xp);
hold on, plot(xp,yp,’k’), hold off, grid on
axis([0 4 -2 3]), print -dpdf extrapolatethis.pdf

5

4 & 5. a. n = 2 case. First we convert the problem to an integral on [−1, 1] by the

transformation x = (1/2)[(b− a)t+ a+ b], using a = 1 and b = 1.5. (See page 233 of the 9th

edition of Burden&Faires, in section 4.7. Then we apply the n = 2 rule, using the roots and

coefficients found in the table in section 4.7 of Burden&Faires:

∫ 1.5

1
x2 lnx dx

x = 0.5[0.5t+ 2.5]

=

∫ 1

−1
(0.5[0.5t+ 2.5])2 ln (0.5[0.5t+ 2.5]) (0.5)2 dt

= (0.5)4
∫ 1

−1
(0.5t+ 2.5)2 ln (0.5[0.5t+ 2.5]) dt

≈ (0.5)4 (c1F (t1) + c2F (t2)) = 0.1922687.

In applying the rule, the “≈” step, we use F (t) = (0.5t+ 2.5)2 ln (0.5[0.5t+ 2.5]). Note ci = 1

and ti = ±
√

3/3 here.

n = 3 case. Similarly,∫ 1.5

1
x2 lnx dx = (0.5)4

∫ 1

−1
(0.5t+ 2.5)2 ln (0.5[0.5t+ 2.5]) dt

≈ (0.5)4 (c1F (t1) + c2F (t2) + c3F (t3)) = 0.192259377.

exact value and comparison. The exact value is by integration by parts, for example:∫ 1.5

1
x2 lnx dx =

x3

3
lnx

]1.5
1

−
∫ 1.5

1

x3

3

1

x
dx = C − 1

3

∫ 1.5

1
x2 dx = C − 1

9
x3
]1.5
1

= 0.192259357,

where C = 1.53 ln(1.5)/3. Thus the absolute error from the n = 2 rule is about 9× 10−6 and

from the n = 3 rule is about 2 × 10−8. Both of these Gaussian rules are doing pretty well,

given that they evaluate the integrand so few times!

b. n = 2 case. Similarly:

∫ 1.6

1

2x

x2 − 4
dx

x = 0.5[0.6t+ 2.6]

= 0.3

∫ 1

−1

0.6t+ 2.6

0.25(0.6t+ 2.6)2 − 4
dt ≈ −0.730723036271920.

n = 3 case. Similarly, ∫ 1.6

1

2x

x2 − 4
dx ≈ −0.733799022249413

exact value and comparison. The exact value is by integration using a substitution and

then the rule
∫
u−1 du = ln |u|+ c:

∫ 1.6

1

2x

x2 − 4
dx

u = x2 − 4

=

∫ −1.44
−3

1

u
du = ln(1.44)− ln(3) = −0.733969175080201.

Thus the absolute error from the n = 2 rule is about 3 × 10−3 and from the n = 3 rule is

about 2× 10−4. Neither rule does quite as well as in part (a). This can be attributed to the

integrand being “less like” a polynomial, though making that precise would be pretty hard!

6

6. We consider f(x) = 1, x, x2, x3 in turn:

2 =

∫ 1

−1
1 dx = a+ b

0 =

∫ 1

−1
x dx = −a+ b+ c+ d

2

3
=

∫ 1

−1
x2 dx = a+ b− 2c+ 2d

0 =

∫ 1

−1
x3 dx = −a+ b+ 3c+ 3d

We have generated a linear system to solve, so here’s the Matlab/Octave:

>> A = [1 1 0 0; -1 1 1 1; 1 1 -2 2; -1 1 3 3]
>> b = [2 0 2/3 0]’
>> v = A \ b
v =

1
1

0.333333333333333
-0.333333333333333

Thus the new rule is ∫ 1

−1
f(x) dx ≈ f(−1) + f(1) +

1

3
f ′(−1)− 1

3
f ′(−1).

This is some kind of correction to the trapezoid rule, which is∫ 1

−1
f(x) dx ≈ f(−1) + f(1).

The trapezoid rule has degree of precision 1, but our new rule uses information about the

derivative to “correct” for changing slope. (If the slope is constant then f ′(−1) = f ′(1) and

the correction is zero . . . as it should be because the trapezoid rule already gets the linear case

right.)

