
Math 310 Numerical Analysis, Fall 2010 (Bueler) November 8, 2010

Solutions to Assignment #6

1. The plotting part of this problem is very easy to do because plotting piecewise-linear
functions for given points is MATLAB/OCTAVE’s default plotting mode. The next program,
which produces Figure 1, is mostly an excuse to show a few plotting commands which you
may not have used yet: setting default values for line widths and such, clf, subplot,
legend, title.

prob1a6.m
% PROB1A6 Produce one plot for both parts of problem 1 on A#6.

% useful commands so figures have bolder lines and markers

set(0,’defaultlinelinewidth’,2.0)

set(0,’defaultlinemarkersize’,12.0)

clf % clear the current figure

% part (a)

xxa = 0:.01:3; % fine grid

xa = [0, 1, 2, 3];

subplot(1,2,1)

plot(xxa,cos(xxa),’r’,xa,cos(xa),’b-o’)

legend(’y = cos(x)’,’y = R(x)’)

title(’part (a)’), xlabel x

% part (b)

xxb = 0:.01:5; % fine grid

xb = [0, 0.5, 1.2, 3, 5];

f = @(x) exp(-x.^2);

subplot(1,2,2)

plot(xxb,f(xxb),’r’,xb,f(xb),’b-o’)

legend(’y = e^{-x^2}’,’y = R(x)’)

title(’part (b)’), xlabel x

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

x

part (b)

y = e-x2

y = R(x)

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3

x

part (a)

y = cos(x)
y = R(x)

FIGURE 1. Plot of the function and its piecewise-linear interpolant R(x), for
each part of problem 1.

2

(a) Now we apply the theorem. Here f ′′(x) = − cos x so M = max0≤x≤3 | f ′′(x)| = 1. Also
∆x = maxj=0,1,2 |xj+1 − xj| = 1; the grid is equally-spaced. Thus we know in advance that

|R(x)− f (x)| ≤ M
2

∆x2 =
1
2
· 12 = 0.5

for 0 ≤ x ≤ 3. The plot confirms that this upper bound is correct, but a bit pessimistic; the
actual maximum of |R(x)− f (x)| is about 0.1.

(b) Here f ′(x) = exp(−x2)(−2x) and f ′′(x) = exp(−x2)(4x2 − 2). An apparently-
reasonable upper bound for | f ′′(x)| comes from maximizing each factor:

M = max
0≤x≤5

| f ′′(x)| ≤
(

max
0≤x≤5

| exp(−x2)|
) (

max
0≤x≤5

|4x2 − 2|
)
= (1)(4 · 52 − 2) = 98.

This is pessimistic because the factors are large at different places, while we would really
want the maximum of the product. Because ∆x = 2, the length of the largest gap, it follows
that

|R(x)− f (x)| ≤ M
2

∆x2 =
98
2
· 24 = 196.

The plot confirms both the truth and the substantial pessimism of this statement.
(The largest actual error |R(x)− f (x)|, of about 0.15, occurs on an subinterval [1.2, 3] which is

shorter than ∆x = 2. This illustrates that the best interpolation strategy would come from putting
interpolation points in the right places. It is less efficient to uniformly reduce ∆x.)

2. I apologize for not making clear where my “summary” of the trapezoid rule started and ended.
The requested calculation is simple. It shows that, for functions with bounded second derivatives, the
trapezoid rule can be made as accurate as desired by choosing n appropriately large. Because of the
square on “n” in the denominator of the final expression, doubling the number of points generally
reduces the error by a factor of four.

We use the integral triangle inequality to turn our bound on the error in piecewise-linear
interpolation into a bound for the error in the trapezoid rule:∣∣∣∣∫ b

a
R(x) dx−

∫ b

a
f (x) dx

∣∣∣∣ ≤ ∫ b

a
|R(x)− f (x)| dx ≤

∫ b

a

M
2

∆x2 dx

=
M
2

∆x2 (b− a) =
M
2

(
b− a

n

)2

(b− a) ≤ M(b− a)3

2n2 .

Note that at one stage we actually integrate a constant, and in the next stage we use the
expression ∆x = (b− a)/n.

3. (a) Here n = 1. There are no interior points at which we “match up” the cubic parts. We
seek S0(x) = a0 + b0(x− 0) + c0(x− 0)2 + d0(x− 0)3 satisfying only four conditions:

S0(0) = 1.0000, S0(0.5) = 2.71828, S′′0 (0) = 0, S′′0 (0.5) = 0.

These conditions determine the cubic. Note that S′′0 (x) = 2c0 + 6d0(x− 0). Thus, the first and
third conditions imply a0 = 1 and c0 = 0, so that the second and fourth conditions say

1 + b0(0.5) + d0(0.5)3 = 2.71828, 6d0(0.5) = 0.

respectively. The latter of these implies d0 = 0, and thus the former implies b0 = (2.71828−
1)/(0.5) = 3.43656. Thus

S0(x) = 1 + 3.43656x.

3

This is a linear function. (Why? Linear functions are the only cubic polynomials which have zero
second derivative at two distinct locations, because the second derivative of a cubic polynomial has
either exactly one root or is identically zero.)

(b) Here you should set up and solve a system using MATLAB/OCTAVE. When I do this I
get:

S0(x) = −0.29004996− 2.7512863(x− 0.1) + 4.38125(x− 0.1)3,

S1(x) = −0.56079734− 2.6198488(x− 0.1) + 1.314375(x− 0.1)2 − 4.38125(x− 0.1)3.

4. (a) Using ncspline.m to “compute” the natural cubic spline means using the program
to compute the coefficients. If you look at the program you will see lines 53 and 54 saying

% uncomment this to view table of coefficients:
%[b c d]

For this part of the problem, you get the same solution, i.e. coefficients, as problem 3(b). The
following program produces the left plot in Figure 2.

prob4aona6.m
% PROB4AONA6 Solve problem 4(a) on Assignment #6: compute and plot the spline.

x = [0.1, 0.2, 0.3];

y = [-0.29004996, -0.56079734, -0.81401972];

xp = 0.1:.0001:0.3;

yp = ncspline(x,y,xp); % with line 54 uncommented, this produces coeffs [b c d]

set(0,’defaultlinelinewidth’,2.0,’defaultlinemarkersize’,12.0)

plot(x,y,’o’,xp,yp), legend(’data’,’natural cubic spline’)

xlabel x, axis tight

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

x

data
natural cubic spline

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7

x

data
natural cubic spline

FIGURE 2. (left) Plot of the data points and the natural cubic spline inter-
polant S(x) = {S0(x), S1(x)} through the points, for problem 4(a). (right)
Plot of the data points and the spline interpolant for problem 4(b).

(b) A very similar program produces the right plot in Figure 2. The program, and a
slightly-modified version of ncspline.m to output the coefficients more directly, are posted
online at

4

http://www.dms.uaf.edu/~bueler/prob4bona6.m
http://www.dms.uaf.edu/~bueler/bcd_ncspline.m

The six polynomials are:

S0(x) = 0.98020 +−0.50172(x− 0.1) + 0.00000(x− 0.1)2 +−6.90812(x− 0.1)3

S1(x) = 0.92312 +−0.70896(x− 0.2) +−2.07243(x− 0.2)2 + 3.77058(x− 0.2)3

S2(x) = 0.83527 +−1.01033(x− 0.3) +−0.94126(x− 0.3)2 + 1.32581(x− 0.3)3

S3(x) = 0.72615 +−1.15881(x− 0.4) +−0.54352(x− 0.4)2 + 1.69619(x− 0.4)3

S4(x) = 0.60653 +−1.21663(x− 0.5) +−0.03466(x− 0.5)2 + 2.22942(x− 0.5)3

S5(x) = 0.48675 +−1.15668(x− 0.6) + 0.63417(x− 0.6)2 +−2.11388(x− 0.6)3

5.
prob5ona6.m

% PROB5ONA6 Solve problem 5 on Assignment #6.

x = [0.1, 0.2, 0.3];

y = [-0.29004996, -0.56079734, -0.81401972];

format long

y018 = ncspline(x,y,0.18)

f = @(x) x.^2 .* cos(x) - 3 * x;

f(0.18)

abs(y018 - f(0.18)) % actual error |S0(0.18) - f(0.18)|

% I filled in the coefficients of these polynomials after running the above the

% first time to get b,c,d

S0 = @(x) -0.29004996 - 2.7512863 * (x-0.1) + 4.38125 * (x-0.1)^3;

dS0dx = @(x) -2.7512863 + 3 * 4.38125 * (x-0.1)^2;

dfdx = @(x) 2*x.*cos(x) - x.^2 * sin(x) - 3;

dS0dx(0.18)

dfdx(0.18)

abs(dS0dx(0.18) - dfdx(0.18)) % actual error |S0’(0.18) - f’(0.18)|

>> prob5ona6
y018 = -0.507909664000000
ans = -0.508123464353665
ans = 2.13800353664917e-04
ans = -2.66716630000000
ans = -2.65161682877527
ans = 0.0155494712247268

Thus S(0.18) = −0.507909664 while f (0.18) = −0.508123464 for an actual error of about
2.1× 10−4. Also, S′0(0.18) = −2.6671663 while f ′(0.18) = −2.6516168, for an actual error of
about 1.6× 10−2.

http://www.dms.uaf.edu/~bueler/prob4bona6.m
http://www.dms.uaf.edu/~bueler/bcd_ncspline.m

