Assignment #5

Due Friday, 22 October at the start of class

Read subsections 3.1 and 3.2 of the text, and do the following exercises.

1. Let $x_0 = 1, x_1 = 1.25, x_2 = 1.6$. For each of the following functions, construct the interpolating polynomial P(x) of degree 2. Compute f(1.4) and P(1.4). Report the actual absolute error. (*I am not concerned with which method you choose to compute* P(x) *in each part. But do show your work, so I know you have* some *method.*)

a.
$$f(x) = \sin(\pi x)$$

b. $f(x) = \log_{10}(3x - 1)$
c. $f(x) = \sqrt[3]{x - 1}$

c.
$$f(x) = \sqrt[3]{x-1}$$

2. For each of the functions in problem **1**, and considering the same interpolation problems, use the Lagrange Remainder Theorem (Theorem 3.3) to find an error bound for the approximations. That is, find *bounds* on |P(1.4) - f(1.4)| from the Theorem. (*Thus you should identify the parts as* **a**, **b**, **c**, *just as in problem* **1**. *Also note that your error bounds must exceed the actual errors!*)

3. Let $P_3(x)$ be the interpolating polynomial for the data (0,0), (0.5, y), (1,3), (2,2). The coefficient of x^3 in $P_3(x)$ is 6. Find y.

4. Use Neville's method to approximate $\sqrt{2}$ with the following functions and values:

a. $f(x) = 2^x$ and the values $x_0 = -2, x_1 = -1, x_2 = 0, x_3 = 1, x_4 = 2$.

b. $f(x) = \sqrt{x}$ and the values $x_0 = 0, x_1 = 1/3, x_2 = 1, x_3 = 3, x_4 = 4$.

c. Compare the actual accuracy of the approximations in parts **a** and **b**. (*This assumes you can find an exact value for* $\sqrt{2}$...)

5. In probability and statistics there are many uses for the "error function"

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt.$$

Unfortunately, it is known that there is no elementary formula for the antiderivative of $f(t) = \exp(-t^2)$, so the above formula for $\operatorname{erf}(x)$ cannot be simplified. This problem describes one method for approximating $\operatorname{erf}(x)$ with known accuracy anyway.

a. Let P(t) be the degree 8 polynomial interpolant of $f(t) = \exp(-t^2)$ using the points $x_j = 0.1j$ for j = 0, ..., 8. That is, $x_0 = 0.0, x_1 = 0.1, x_2 = 0.2, ..., x_8 = 0.8$. Compute the coefficients of P(t) in a program. The Vandermonde method is almost certainly the easiest way to get these coefficients.

b. Use the Lagrange Remainder Theorem (Theorem 3.3) to find a bound for the approximation error $\max |P(t) - f(t)|$ on the interval $t \in [0, 0.8]$.

c. Now, unlike f(t), you do know how to integrate P(t). I.e. you know how to find an antiderivative Q(t) of P(t): Q'(t) = P(t). Do so, and then use the Fundamental Theorem of Calculus to approximate erf(0.8). That is, compute

$$F(0.8) \equiv \frac{2}{\sqrt{\pi}} \left(Q(0.8) - Q(0) \right) \approx \operatorname{erf}(0.8).$$

(Note that the MATLAB/OCTAVE program you wrote in part **a** can be amended to compute the antiderivative and then the value of erf(0.8). Think before either writing code or doing the integral yourself using nasty decimal expansions of the coefficients.)

d. On the other hand, erf is a built-in function in MATLAB/OCTAVE. Use it to compute the actual absolute error in your approximation of erf(0.8).

e. Use the bound computed in part **b** to give a bound on the error |F(0.8) - erf(0.8)|. (*This bound should not require any knowledge gained in part* **c**, except that, as usual, the bound must be greater than the actual erro.)