
Math 310 Numerical Analysis, Fall 2010 (Bueler) October 15, 2010

Solutions to Assignment #4

1. a. f(p) = p4 + 2p2 − p− 3 = 0 can be re-arranged to

p4 = 3 + p− 2p2 or p =
(
3 + p− 2p2

)1/4
Thus f(p) = 0 if and only if p is a fixed point of g1(x) =

(
3 + x− 2x2

)1/4
. Here are 20 iterations:

>> g1 = @(x) (3+x-2*x^2)^(1/4)

>> format long g

>> p = 1, for n=1:20, p = g1(p), end

p = 1

p = 1.18920711500272

p = 1.08005775266756

...

p = 1.12410508074685

p = 1.12413407454347

p = 1.12411623301991

This at least looks like it is converging to a fixed point.

b. Similarly, f(p) = 0 can be rewritten

2p2 = p + 3− p4 or p =

(
p + 3− p4

2

)1/2

Thus f(p) = 0 if and only if p is a fixed point of g2(x) =
(
(x + 3− x4)/2

)1/2
. Here are 20 iterations:

>> g2 = @(x) ((x+3-x^4)/2)^(1/2);

>> p = 1, for n=1:20, p = g2(p), end

p = 1

p = 1.22474487139159

...

p = 0.957226754592156

p = 1.24852955693609

p = 0.953569842385412

p = 1.25035027839163

p = 0.950317401707698

This looks like some kind of oscillation, which is growing in magnitude.

c. Just from the above info, g1(x) seems more promising. (Given the theory we know, we
should expect that |g′1(1.1241)| < 1 while |g′2(1.1241)| > 1. You can check that this is true.)

2. a. First, g′(x) = cosx so on the interval [2, 3], we know g(x) is decreasing because cosx < 0
on this interval. Because g(x) is decreasing on this interval we need only check that g(2) and g(3)
are in the interval [2, 3] in order to know that g(x) is in [2, 3] for all x ∈ [2, 3]. But g(2) = 2.9093
while g(3) = 2.1411. Thus g(x) ∈ [2, 3] if x ∈ [2, 3].

Now,

max
2≤x≤3

|g′(x)| = max
2≤x≤3

| cosx| = | cos 3| = 0.98999.
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Let k = 0.99 < 1. Because g is continuous and |g′(x)| ≤ k < 1 on the interval [2, 3], by theorem 2.3
there is a unique fixed point on this interval. Furthermore we see that by theorem 2.4 the iteration
pn = g(pn−1) will converge for any starting point p0 in the interval [2, 3].

Finally, it is easy to see that f(p) = 2 + sin p−p = 0 can be manipulated to p = g(p) = 2 + sin p.

b. Here g′(x) = (2/3) (2x + 5)−1/3. This is always positive if x ∈ [2, 3] so g(x) is increasing.
But g(2) = 2.0801 and g(3) = 2.2240 so g(x) ∈ [2, 3] if x ∈ [2, 3]. On the other hand,

max
x∈[2,3]

|g′(x)| = max
x∈[2,3]

2

3
(2x + 5)−1/3 =

2

3

(
min
x∈[2,3]

2x + 5

)−1/3
=

2

3
(2(2) + 5)−1/3 = 0.32050.

Let k = 0.33. Then |g′(x)| ≤ k < 1 if x ∈ [2, 3] so by theorem 2.3 there is a unique fixed point
p = g(p) and by theorem 2.4 the iteration pn = g(pn−1) will converge for any starting point
p0 ∈ [2, 3]. Finally, it is easy to see that f(p) = p3 − 2p− 5 can be manipulated to p3 = 2p + 5 or

p = g(p) = (2p + 5)1/3.

3. A function with the desired properties could be discontinuous, and have slope greater than
one (in magnitude) at the fixed point, but still have only one fixed point. For example,

g(x) =

{
1− (x/0.6), 0 ≤ x ≤ 0.6,

0.2, 0.6 < x ≤ 1.

Here g(x) is defined for all x ∈ [0, 1], and g(x) ∈ [0, 1] if x ∈ [0, 1], but g has the properties just
mentioned. See Figure 1. The figure is generated by the next code, which can only be of interest
as an illustration of plotting commands.

uniquefixed.m
% UNIQUEFIXED Plot piecewise linear function.

clf, x=0:0.001:0.6; plot(x,1.0 - (1.0/0.6)*x)
hold on, x=0.6:.001:1.0; plot(x,0.2*ones(size(x)))
plot([0 0.6 1.0],[1.0 0.0 0.2],’o’,’markersize’,6,’linewidth’,6.0)
plot(0.6,0.2,’o’,’markersize’,10,’linewidth’,1.5)
x=0:0.001:1.0; plot(x,x,’g’)
axis([0 1 0 1]), xlabel x, ylabel y, hold off, axis equal
% print -dpdf uniquefixed.pdf
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Figure 1. Plot of y = g(x) for a piecewise constant g(x) which is not continuous
and which has slope greater than one in magnitude at the fixed point p = g(p).
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4. Here g(x) = (x/2) + 7/(2x). The number p is a fixed point of g if and only if the following
equivalent statements are true:

p =
1

2
p +

7

2p
or 2p− p =

7

p
or p2 = 7

or p = ±
√

7. Consider the derivative at the positive fixed point:

g′(x) =
1

2
− 7

2x2
so g′(

√
7) =

1

2
− 7

2(7)
= 0.

In fact, for any 2 ≤ x ≤
√

7 we have

|g′(x)| =
∣∣∣∣12 − 7

2x2

∣∣∣∣ =
1

2

∣∣∣∣1− 7

x2

∣∣∣∣ =
1

2

(
7

x2
− 1

)
≤ 1

2

(
7

22
− 1

)
=

3

8

while for any x ≥
√

7 we have

|g′(x)| = 1

2

(
1− 7

x2

)
≤ 1

2
(1− 0) =

1

2
.

Thus on the interval [2,∞] we have |g′(x)| = 1
2 . Also g(x) ∈ [2,∞) if x ∈ [2,∞). Thus by theorem

2.4 there is a unique fixed point on the interval [2,∞, which we already know is p =
√

7, and the
iteration xn = g(xn−1) converges to it for any x0 ≥ 2.

Comment. Consider the root-finding problem f(x) = x2 − 7 = 0. Apply Newton’s method:

xn = xn−1 −
f(xn−1)

f ′(xn−1)
= xn−1 −

x2n−1 − 7

2xn−1
=

2x2n−1
2xn−1

−
x2n−1 − 7

2xn−1
=

1

2
xn−1 +

7

2xn−1
.

Thus the above argument shows Newton’s method works (converges) for any starting point x0 ≥ 2.

5. Here Newton’s method is:

pn = pn−1 −
f(pn−1)

f ′(pn−1)
= pn−1 −

−p3n−1 − cos(pn−1)

−3p2n−1 + sin(pn−1)
.

Using Matlab/Octave to find p2 given p0 = −1:

>> g = @(x) x - (-x^3-cos(x))/(-3*x^2+sin(x));

>> p = -1;

>> p = g(p)

p = -0.88033

>> p = g(p)

p = -0.86568

Thus p2 = −0.86568, approximately. If we attempt p0 = 0 we get:

>> p = 0; p = g(p)

warning: division by zero

p = Inf

Of course, the reason for difficulties should be obvious: f ′(0) = 0.

6. In these exercises I start by checking I have a bracket on the given interval. We see the secant
method converges almost as fast as Newton’s. I know I have 10−5 accuracy because the iterations
agree to 14 digits.

a.
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>> f = @(x) exp(x) - 2.^(-x) + 2 * cos(x) - 6;

>> [f(1) f(2)]

ans =

-2.70111355980468 0.306762425836365

>> df = @(x) exp(x) + log(2) * 2.^(-x) - 2 * sin(x);

>> p = 1.8, for n=1:5, p = p - f(p) / df(p), end % Newton’s

p = 1.8

p = 1.96087660418324

p = 1.94465320885678

p = 1.94446250759735

p = 1.94446248157493

p = 1.94446248157493

>> polder=1.8; pold=1.9 % Secant

pold = 1.9

>> for n=1:6, pnew = pold - (pold-polder) * f(pold) / (f(pold)-f(polder)); ...

> polder=pold; pold=pnew, end

pold = 1.94934738830449

pold = 1.94430510658999

pold = 1.94446193240902

pold = 1.94446248163677

pold = 1.94446248157493

pold = 1.94446248157493

b.

>> f = @(x) log(x-1) + cos(x-1);

>> [f(1.3) f(2)]

ans =

-0.24863631520033 0.54030230586814

>> df = @(x) 1./(x-1) - sin(x-1);

>> p = 1.6, for n=1:6, p = p - f(p)/df(p), end % Newton’s

p = 1.6

p = 1.31460699949791

p = 1.38623612050177

p = 1.39752389069251

p = 1.3977483900825

p = 1.39774847595873

p = 1.39774847595875

>> pold = 1.6; p = 1.4 % Secant

p = 1.4

>> for n=1:6, pnew = p - f(p) * (p-pold) / (f(p)-f(pold)); pold=p; p=pnew, end

p = 1.39691982546514

p = 1.39775165385563

p = 1.39774848044192

p = 1.39774847595872

p = 1.39774847595875

p = 1.39774847595875

7. These exercises were adequately discussed in class.

8. Likewise.


