
Math 310 Numerical Analysis, Fall 2010 (Bueler) September 23, 2010

Selected Solutions to Assignment #1 (with corrections)

2. Because the functions are continuous on the given intervals, we show these equations have solutions

by checking that the functions have opposite signs at the ends of the given intervals, and then by invoking

the Intermediate Value Theorem (IVT).

a. f(0.2) = −0.28399 and f(0.3) = 0.0066009. Because f(x) is continuous on [0.2, 0.3], and because

f has different signs at the ends of this interval, by the IVT there is a solution c in [0.2, 0.3] so that

f(c) = 0.

Similarly, for [1.2, 1.3] we see f(1.2) = 0.15483, f(1.3) = −0.13225. And etc.

b. Again the function is continuous. For [1, 2] we note f(1) = 1 and f(2) = −0.69315. By the IVT

there is a c in (1, 2) so that f(c) = 0.

For the interval [e, 4], f(e) = −0.48407 and f(4) = 2.6137. And etc.

3. One of my purposes in assigning these was that you should recall the Extreme Value Theorem. It

guarantees that these problems have a solution, and it gives an algorithm for finding it. That is, “search

among the critical points and the endpoints.”

a. The discontinuities of this rational function are where the denominator is zero. But the solutions

of x2 − 2x = 0 are at x = 2 and x = 0, so the function is continuous on the interval [0.5, 1] of interest.

So we find the derivative by the quotient rule; after simplification:

f ′(x) = −
2
(
2x2 + 5x+ 3

)
(x2 − 2x)2

.

This derivative is zero where the numerator is zero:

2x2 + 5x+ 3 = 0.

Because I did not see the roots right away, I used the quadratic formula:

x =
−5±

√
25− 24

4
= {−1,−3/2}.

But neither of the roots is in the interval [0.5, 1]. Thus we evaluate the endpoints, and the solution

must be one of these:

f(0.5) = 4/3, f(1) = −1.

Thus the maximum of f(x) on [0.5, 1] occurs at x = 0.5 and has value 4/3.

b. We might as well plug in the endpoints first: f(2) = −2.6146, f(4) = −5.1640. But a graph

shows a maximum in the interior, actually. One way to pin down its location is, as usual, to find f ′(x)

and solve f ′(x) = 0. After some simplification,

f ′(x) = 2 (cos(2x)− x sin(2x)− x+ 2) .

I do not know how to solve f ′(x) = 0 by hand. But it is pretty easy to graph the derivative and
“zoom in” to get close to the solution; one way looks like this:

>> dfdx = @(x) cos(2*x) - x .* sin(2*x) - x + 2;

>> x=2:0.001:4; plot(x,dfdx(x)), grid on

>> x=3.1:0.0001:3.15; plot(x,dfdx(x)), grid on

>> x=3.12:0.0001:3.125; plot(x,dfdx(x)), grid on

>> x=3.1218:0.0001:3.1222; plot(x,dfdx(x)), grid on

>> x=3.1219:0.00001:3.12195; plot(x,dfdx(x)), grid on

>> dfdx(3.121935)

ans = 4.6913e-07



2

Note that f(3.121935) = 4.9803, and this is (close to) the maximum of f(x).

I would guess that I just got a 5 digit-accurate estimate of the location of the maximum of f . There

are more systematic ways to solve equations like f ′(x) = 0, including the robust bisection method,

which would work just fine here.

4. to show: Suppose f ∈ C[a, b] and f ′(x) exists on (a, b). If f ′(x) 6= 0 for all x in (a, b), then there

exists at most one number p in [a, b] with f(p) = 0.

Proof. The assumptions about f allow us to apply the Mean Value Theorem (MVT). Let us suppose,

to see what consequences follow, that there are (at least) two solutions: f(p1) = 0, f(p2) = 0, p1 6= p2.

By the MVT there is c in [p1, p2] so that

f ′(c) =
f(p2)− f(p1)

p2 − p1
=

0

p2 − p1
= 0.

But the existence of a zero of f ′ contradicts the hypotheses we are assuming; they say there is no such

root. Thus there cannot be two solutions, but at most one. �
Comment 1. It is perfectly-possible that there are no solutions, even for functions f satisfying the

hypotheses. Let f(x) = x and [a, b] = [1, 2], for example.

Comment 2. You may also prove this by the “special MVT”, namely Rolle’s theorem.

5. Let f(x) =
√
x+ 1 and x0 = 0. Then f(x0) = 1 and

f ′(x) =
1

2
(x+ 1)−1/2 so f ′(x0) =

1

2
,

f ′′(x) = −1

4
(x+ 1)−3/2 so f ′′(x0) = −1

4
,

f ′′′(x) =
3

8
(x+ 1)−5/2 so f ′′′(x0) =

3

8
.

Thus

P3(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)2 +

f ′′′(x0)

3!
(x− x0)3

= 1 +
1

2
x− 1

8
x2 +

1

16
x3.

Figure 1 plots both functions, and we see P3 approximates f quite well near zero, as expected. By the
way, Figure 1 was produced by these Matlab/Octave commands, which use “anonymous” functions,
the code with the “@” symbol:

>> f = @(x) sqrt(x+1)

>> P3 = @(x) 1 + 0.5*x - (1/8)*x.^2 + (1/16)*x.^3

>> x=-1:0.001:1.5; plot(x,f(x))

>> xlong=-1.5:0.001:1.5; hold on, plot(xlong,P3(xlong),’g’), hold off

>> grid on, xlabel x

Now we actually answer the question:

• 0.70711 =
√

0.5 = f(−0.5) ≈ P3(−0.5) = 0.71094, with actual error

|P3(−0.5)− f(−0.5)| = 3.8× 10−3

• 0.86603 =
√

0.75 = f(−0.25) ≈ P3(−0.25) = 0.86621, with actual error

|P3(−0.25)− f(−0.25)| = 1.9× 10−4

• 1.11803 =
√

1.25 = f(0.25) ≈ P3(0.25) = 1.11816, with actual error

|P3(0.25)− f(0.25)| = 1.3× 10−4

• 1.22474 =
√

1.5 = f(0.5) ≈ P3(0.5) = 1.22656, with actual error

|P3(0.5)− f(0.5)| = 1.8× 10−3
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Figure 1. Plot of f(x) =
√
x+ 1 (blue) and P3(x) (green). Note that P3(x) is defined

on the whole real line while f(x) is only defined on [−1,∞). The two functions agree

to screen resolution on about (−0.3, 0.3).

Comment. Stating the actual error with just two digits of precision is fine. Unlike the answer itself we

generally don’t need the error to be accurately known, as its magnitude matters most.

6. We are given f(x) and the basepoint. I compute and simplify the (eventually) needed derivatives

by-hand:

f ′(x) = 2 cos(2x)− 4x sin(2x)− 2(x− 2),

f ′′(x) = −8 sin(2x)− 8x cos(2x)− 2,

f ′′′(x) = −24 cos(2x) + 16x sin(2x),

f (4)(x) = 64 sin(2x) + 32x cos(2x),

f (5)(x) = −160 cos(2x)− 64x sin(2x).

a. For P3(x) I evaluate the derivatives through f ′′′ at x0 = 0. Thus:

P3(x) = −4 + 6x− x2 − 4x3.

I evaluate P3(0.4), and f(0.4), and the actual error, by the following Matlab/Octave code, which
again uses “anonymous functions”:

>> f = @(x) 2*x.*cos(2*x) - (x-2).^2;

>> P3 = @(x) -4 + 6*x - x.^2 -4 * x.^3;

>> f(0.4)

ans = -2.0026

>> P3(0.4)

ans = -2.0160

>> abs(P3(0.4)-f(0.4))

ans = 0.013365

We see that the error in the approximation is better than 1 part in 100. In fact, the relative actual

error is easily computable, too:

|P3(0.4)− f(0.4)|
|f(0.4)|

= 0.0067.
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b. The remainder term uses the 4th derivative:

R3(x) =
64 sin(2ξ(x)) + 32ξ(x) cos(2ξ(x))

4!
(x− 0)4.

We are interested in the size of R3(0.4) because |P3(0.4) − f(0.4)| = |R4(0.4)| is the error in using

P3(0.4) to approximate f(0.4). First,

R3(0.4) =
64 sin(2ξ(0.4)) + 32ξ(0.4) cos(2ξ(0.4))

24
(0.4)4.

Now, all we know about the number “ξ(0.4)” is that it is between x0 = 0 and x = 0.4. This is enough

to estimate the numerator, in the last expression, using | sin θ| ≤ 1 and | cos θ| ≤ 1:

|64 sin(2ξ(0.4)) + 32ξ(0.4) cos(2ξ(0.4))| ≤ 64(1) + 32(0.4)(1) = 76.8.

It follows that

|P3(0.4)− f(0.4)| = |R4(0.4)| ≤ 76.8

24
(0.4)4 = 0.082.

This estimate of the absolute actual error does indeed exceed the absolute actual error we computed in

part a.

c. Now I will be more brief. Note f (4)(x0) = 0. That is, the 4th Taylor polynomial is the same as

the third:

P4(x) = −4 + 6x− x2 − 4x3.

Thus the actual error is identical to that in part a.

d. But the error estimate is better. We compute:

R4(x) =
160 cos(2ξ(x))− 64ξ(x) sin(2ξ(x))

5!
(x− 0)5.

Thus

R4(0.4) =
160 cos(2ξ(0.4))− 64ξ(0.4) sin(2ξ(0.4))

5!
(0.4)5

and again we know 0 ≤ ξ(0.4) ≤ 0.4 so

|160 cos(2ξ(0.4))− 64ξ(0.4) sin(2ξ(0.4))| ≤ 160 + 64(0.4) = 185.6

so

|P4(0.4)− f(0.4)| = |R4(0.4)| ≤ 185.6

120
(0.4)5 = 0.016.

Ah ha! This estimate is a very good upper bound on the absolute actual error we had in parts a and

c, which was 0.013. The estimate is morally-superior, to a numerical analyst, because we did not need

to know the exact value f(0.4) to know the estimate, though one must know the function value to know

the actual error.

7. Let x0 = 0; note we are interested in the small angle 1◦, so this basepoint is natural. Note

f(0) = 0. The derivatives of f(x) = sinx are

f ′(x) = cosx f ′(0) = 1,

f ′′(x) = − sinx f ′′(0) = 0,

f ′′′(x) = − cosx f ′′′(0) = −1,

and so on. From these we see that

P2(x) = 0 + 1 · x+ 0 = x.

Thus the approximation sinx ≈ x is actually a quadratic approximation. It is a quadratic function

with zero “x2” term. But then

R2(x) =
− cos ξ(x)

3!
x3
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and

|R2(1◦)| =
∣∣∣R2

( π

180

)∣∣∣ =
| cos ξ(π/180)|

6

( π

180

)3

≤ 1

6

( π

180

)3

= 8.9× 10−7.

So is sin(π/180) ≈ π/180 very accurate? The estimated error 8.9 × 10−7 is small, but the number

π/180 isn’t that big either. This is a time to compute, and approximate, the relative error. Let’s

pretend we still don’t know sin(π/180). In that case, here is what we know about the relative error:

|π/180− sin(π/180)|
| sin(π/180)|

≈ |π/180− sin(π/180)|
π/180

≤ 8.9× 10−7

π/180
= 5.1× 10−5.

So we expect that the approximation gets about the first 5 digits correct, and you will see by direct

evaluation of sin() that this is true.

8. a. |(22/7)− π| = 1.2× 10−3, |(22/7)− π|/|π| = 4.0× 10−4

b. |2.718− e| = 2.8× 10−4, |2.718− e|/|e| = 1.0× 10−4

c. |40000− 8!| = 320, |40000− 8!|/|8!| = 7.9× 10−3

d. |
√

2π88.5e−8 − 8!| = 417.6, |
√

2π88.5e−8 − 8!|/|8!| = 1.0× 10−2

9. a. Here p∗ is the truncated series and p = e. And

|p∗ − p| = 1.6× 10−3,
|p∗ − p|
|p|

= 5.9× 10−4.

b. Similarly,

|p∗ − p| = 2.7× 10−8,
|p∗ − p|
|p|

= 1.0× 10−8.

I did all the computations in these lines of Matlab/Octave:

>> p=exp(1);

>> n=0:5; pstar=sum(1./factorial(n)); abs(pstar-p), abs(pstar-p)/p

>> n=0:10; pstar=sum(1./factorial(n)); abs(pstar-p), abs(pstar-p)/p

Note the use of “./” and of “sum”. If it is not already clear, try it yourself, but look at the intermediate

quantities!

10. I have corrected parts a and b.For 64 bit IEEE 754 representation we have this quick

description of a machine number x:

sizes : s = 1 bit, c = 11 bits, f = 52 bits.

meaning : x = (−1)s 2c−102310 (1 + f) , with f interpreted as a fraction, i.e. 0.f2

a. Here c = 210 + 23 + 2 = 1034 and

f =
1

2
+

1

16
+

1

128
+

1

256
= 0.57421875

so

x = (−1)021034−1023
(

1 +
1

2
+

1

16
+

1

128
+

1

256

)
= +211 (1.57421875) = 322410

b. There is merely a change in sign, thus: x = −322410.

c. Here c = 210 − 1 = 1023 and

f =
1

4
+

1

16
+

1

128
+

1

256
= 0.32421875 so x = +20

(
1 +

1

4
+

1

16
+

1

128
+

1

256

)
= 1.3242187510

d. Here there is only a change in the last bit:

f =
1

4
+

1

16
+

1

128
+

1

256
+

1

252
= 0.3242187500000002220446

so x = 1.324218750000000222044610.


