NAME:

MATH 200 Calculus 1 (Bueler)

8 October, 2008

Midterm Exam # 1

100 points total. You have 60 minutes.

1. (a) (5 pts) On the axes provided, sketch a graph of $y = 2^x$. (Be sure to give some scale to each axis, for example by identifying coordinates of some points on the graph.)

(b) (5 *pts*) If $f(x) = 2^x$ and $g(x) = \sqrt{x-1}$, give the <u>formula</u> for, and the <u>domain</u> of, $(g \circ f)(x)$.

2. (5 *pts*) Find the derivative of $F(r) = r^3 + e^r$.

3. Compute the limits:

(a) (5 pts)
$$\lim_{x \to -4} \frac{\frac{1}{4} + \frac{1}{x}}{4 + x}$$

(b) (5 *pts*)
$$\lim_{x \to \infty} \frac{x+2}{\sqrt{9x^2+1}}$$

4. $(10 \ pts)$ On the axes provided, sketch a graph of a function with these properties:

$$\lim_{x \to -1^{-}} f(x) = 0, \qquad \lim_{x \to -1^{-}} f(x) = -1, \qquad f(0) = 0, \qquad f(1) = 3, \qquad f'(1) = -3.$$

5. (10 pts) Use the definition of the derivative to find f'(x) if $f(x) = x^2 + 2$.

6. (10 pts) Find all the vertical and horizontal asymptotes of the graph

$$y = \frac{x^3 + 8}{x^2 - x}$$

7. If a rock is thrown upward on the planet Mars with a velocity of 10 m/s, its height in meters t seconds later is given by $y = 10t - 1.86t^2$.

(a) $(5 \ pts)$ Compute the average velocity over the interval [1,2]. (*There is no need to simplify the number, but give a formula which would be easy to evaluate on a calculator.*)

(b) $(5 \ pts)$ Set up and then compute a limit to calculate the instantaneous velocity at t = 1.

(c) (5 pts) Compute dy/dt if $y = 10t - 1.86t^2$.

8. (10 pts) Define the statement

"
$$\lim_{x \to a} f(x) = L.$$
"

Give either the complete sentence definition or the " ϵ, δ " definition.

9. (a) (5 pts) Use the definition of continuity and the properties of limits to show that the function $f(x) = \cos 5x$ is continuous at x = 0.

(b) (5 pts) Compute the limit: $\lim_{x \to 0} \left(x^3 + \frac{\cos 5x}{10000} \right)$ **10**. (10 pts) Use the given graph of f(x) = 1/x to find a number δ such that if $|x-2| < \delta$ then $\left|\frac{1}{x} - 0.5\right| < 0.2$

graph in 2.4 # 1

Extra Credit. (3 pts) Show that the equation

$$x^4 + x - 3 = 0$$

has at least two solutions, and state the facts and name the theorems you use.