
Math 421 Applied Analysis (Bueler) December 3, 2007

Fourier Transform from Fourier Series

This turns out to be more subtle than I remembered. These comments are an incomplete version of
the full story.

Recall that {
1√
2π
einx

}∞
n=−∞

is an orthonormal set in the space of functions L2(−π, π), on which the inner product is (f, g) =∫ π
−π f(x)g(x) dx. Therefore if a function has complex Fourier series

(1) f(x) =
∞∑

n=−∞
an

1√
2π
einx

it follows that the coefficients are

(2) an =
1√
2π

∫ π

−π
e−inxf(x) dx.

On the other hand, a slight modification of Dirichlet’s theorem shows that if f(x) is a function on [−π, π]
which is piecewise smooth then the right side of equation (1) actually converges to f(x).

In some sense, equations (1) and (2) are a kind of transformation/(inverse transformation) pair. One
can go “forwards” from f(x) to its Fourier series coefficients an and then “back” to f(x).

As noted in class, equations (1) and (2) are reasonably analogous; in both cases there is a limit of a
sum of infinitely many numbers times complex exponentials. (The “numbers” are an in (1) and f(x)
in (2).) But (1) is a discrete sum, not an integral. On the other hand, discrete sums are connected to
integrals, by definition.

Definition. ( The equally-spaced case of Riemann’s definition of the integral.) If f(x) is continuous on
[a, b] then ∫ b

a

f(x) dx := lim
N→∞

N∑
n=1

f(xn)∆x

where

∆x =
b− a
N

and xn is any number in the interval [an, bn] where an = a+ (n− 1)∆x and bn = an + ∆x.

Note in particular that the terms in a sum have to have a coefficient like “∆x”, namely something
which is proportional to 1/N where N is the number of terms in the sum, if the sum is to have a limit
which is an integral. We have to be adding up the areas of thin rectangles which get thinner at the right
rate if we are to have an integral.

So we proceed to try to rewrite the Fourier series pair (1), (2) as two integrals. In the first step we
replace the interval [−π, π] with an arbitrary length interval [−c, c]. The second step is to take a limit
so that interval becomes (−∞,∞). The third step is to use the definition of the Riemann integral to
replace the sum in (1) with an integral.

First Step. Replace x in the integral in (2) by y = cx/π; get

c

π
an =

1√
2π

∫ c

−c
e−inπy/cf

(πy
c

)
dy.
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Define these rescalings

(3) ωn :=
nπ

c
and g(y) := f

(πy
c

)
and G(ωn) :=

c

π
an.

Note that g(y) is defined for y ∈ [−c, c] but G(ω) is only defined for a discrete list of inputs ω, namely
ωn = nπ/c where n is an integer. This list of allowed inputs becomes denser and denser in the real line
as c→∞, however.

We get a rescaling of (1),

(4) g(y) =
1√
2π

∞∑
n=−∞

eiωnyG(ωn)
π

c
,

and of (2) to an arbitrary interval,

(5) G(ωn) =
1√
2π

∫ c

−c
e−iωnyg(y) dy.

The sum in (4) is written to look somewhat more like a Riemann sum than the sum in (1), but we are
not there yet.

Second Step. We take the limit as c→∞ in formulas (4) and (5) to get

(6) g(y) =
1√
2π

lim
c→∞

∞∑
n=−∞

eiωnyG(ωn)
π

c
,

(7) G(ω) =
1√
2π

∫ ∞
−∞

e−iωyg(y) dy.

Note that g(y) is defined on the whole real line when c→∞ because g(y) = f(πy/c). Also, note formula
(7) actually serves as a definition of G(ω) for any ω.

Third Step. This step is the subtle one. The remaining issue is to understand (6) as a Riemann sum.
There are two limit processes in (6) because the sum needs to become an integral and the integral needs
to be on an infinite interval.

But we have to be careful. Rewrite (6) as

g(y) =
1√
2π

lim
c→∞

lim
M→∞

M∑
n=−M

eiωnyG(ωn)
π

c
.

Both c and M get arbitrarily large, but to proceed we take the double limit assuming c = M . Then we
can see the extra coefficient “π/c” as a “∆ω”,

π

c
=

2πc
2M2

=: ∆ω,

for an integral on an interval [−πc, πc] with length 2πc. Now we see ωn = nπ/c = n∆ω. We have a
Riemann sum:

g(y) =
1√
2π

lim
c→∞

lim
M→∞

M∑
n=−M

eiωnyG(ωn) ∆ω =
1√
2π

lim
c→∞

∫ πc

−πc
eiωyG(ω) dω.

Finally we recognize the improper integral. Taking the last limit c→∞ and recalling (7) we have the
Fourier transform pair:

g(y) =
1√
2π

∫ ∞
−∞

eiωyG(ω) dω, G(ω) =
1√
2π

∫ ∞
−∞

e−iωyg(y) dy,

that is,
g(y) = F−1[G](y), G(ω) = F [g](ω).


