
Math 421 Applied Analysis (Bueler) October 22, 2007

Solutions to Exam on DGC&AT
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assuming mixed partial derivatives commute.

2. The easiest way is to convert to cylindrical coordinates first:

F = (x2 + y2)−3(x î + y ĵ) = (r2)−3(r r̂) = r−5 r̂.

Here r and r̂ are the cylindrical coordinates formulas.
Then, using the standard formula,
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1
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.

In cartesian coordinates, ∇ · F = −4(x2 + y2)−3; one can also get this formula by differentiating
using the cartesian formula for the divergence.

3 (a). Because ∇× F = 0, and because this fact is true on all of R3, a simply-connected region,
we conclude that F is path-independent. In particular, a Φ can be defined so that ∇Φ = F. A
formula for such a Φ is

Φ(x, y, z) =
∫ (x,y,z)

(x0,y0,z0)
F · t̂ ds.

This formula is only interesting because it reminds us that we need path independence for this to
be a valid definition.

But we also know ∇ · F = 0. Thus

∇2Φ = ∇ · (∇Φ) = ∇ · F = 0.

Extra Credit [3 (b)]. This is genuinely extra credit in that we have not yet addressed how to
do this. But what to do is clear: find a scalar function Φ defined on all of R3 with the property
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that is, Laplace’s equation ∇2Φ = 0. Furthermore we want Φ to not just be constant or linear,
because we want F = ∇Φ to be non-constant. Here is such a Φ:

Φ(x, y, z) = x2 − y2.

Then

F = 2x î− 2y ĵ.

You may check that this is a curl-free and a divergence-free vector field.
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We will have various ways of producing such formulas in this semester and next semester. In
Math 422 we will learn that the real and imaginary part of a nice function of one complex variable
z = x+ iy will satisfy Laplace’s equation. And

x2 − y2 = <(z2).

4. For a single charge at the origin, clearly the distribution of charge is spherically symmetric.
Thus the electric field E is spherically symmetric (so it only depends on r) and points only in the
radial direction: E = E(r) r̂. Thus by Gauss’ law, if S is a sphere of radius R centered at the
origin,
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This holds for any R > 0. It follows that, as claimed by Coulomb,

E =
q

4πε0r2
r̂.

5. The definition we want is that ∇× F is a vector at each point p for which

n̂ · (∇× F) = lim
∆S→0

1
∆S

∮
C

F · t̂ ds

where n̂ is any unit vector based at p and where C is a small closed curve in a plane through p

with normal n̂ enclosing a surface of area S, and where the orientation of C is such that n̂ and C

are right-hand oriented. (Note that explaining how C, ∆S, and n̂ are related is essential for this
to be a definition.)

The picture is not shown here. See me if desired.

6. By the divergence theorem applied to F = r = x î + y ĵ + z k̂,
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7. This would be a huge pain except for one fact:

∇ · F = (2xy) + (−2xy) + 0 = 0.

Thus
∫∫

S F · n̂ dS =
∫∫∫

V ∇ · F dV = 0 by the divergence theorem.

8. We know a certain fact for every sphere centered at the origin. On the other hand, the
definition of the divergence of a vector field F at a point p is the limit
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The limit is taken over surfaces S around p enclosing volumes ∆V .
Thus we know enough to compute the divergence at the origin:
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Here “S” stands for the sphere of radius R centered at the origin. Recall that for such a sphere
the volume is ∆V = (4/3)πR3.

Thus we know that the divergence at the origin is 3/4. We do not know the divergence elsewhere.
We do not know that the divergence is constant.


