Lab 9 – Inheritance & Exception Handling

Introduction

While implementing the Circle class for this week’s homework assignment [#9], it’s quite clear that the current design is not robust. Specifically, the second constructor and setRadius method allow the user to set the radius of the circle object to a negative number. In an effort to better understand the features of exception handling in Java™, we will utilize our knowledge of inheritance to create a new type of exception called NegativeRadiusException which will be thrown by both the second constructor and setRadius method in the event an attempt to set the radius of a Circle object to a negative number is made.

Define NegativeRadiusException Class

Remember, Java™ is an object oriented language, which means that almost everything is defined as an object, including exceptions. Therefore, it should come as no surprise that the NegativeRadiusException class will be derived from the predefined class Exception, since every exception in Java™ is a descendent of this class. In addition, we want to define an instance variable negativeRadius of type double, which will store the value of the negative radius, and two constructors for our new class. The first constructor will accepts a single argument d of type double, which sets the value of the negativeRadius instance variable to the value stored in d and initializes the inherited error message instance variable, from the Exception class, to whatever want. The second constructor will accept two arguments, a double d that will follow the same procedure as in the first constructor, and a String s which will be assigned to the inherited error message instance variable. This will allow the user of the new NegativeRadiusException class to specify their own error message, if desired. Finally, we will want to override the getMessage method inherited from the Exception class to return a String containing both the error message and negative radius stored in the respective instance variables. The class definition should then be:

public class NegativeRadiusException extends Exception

{

 private double negativeRadius;

 public NegativeRadiusException(double d)

 { this(d,"negative radius"); }

 public NegativeRadiusException(double d, String s)

 { super(s); this.negativeRadius = d; }

 public String getMessage()

 {

return super.getMessage() +

 " [value = " + this.negativeRadius + "]";

 }

}

Modify Circle Class

After completing the class definition of the new NegativeRadiusException, we can now turn our attention towards strengthening the Circle class. Given the abbreviated class definition of below,

public class Circle

{

 private double radius;

 public Circle(double radius)

 { this.setRadius(radius); }

 public void setRadius(double radius)

 { this.radius = radius; }

 public String toString()

 { return "circle: r = " + this.radius; }

}

we want to first modify the code for the setRadius method to notify the compiler that a NegativeRadiusException may be thrown. This is done with the following addendum to the original setRadius method signature illustrated below.

 public void setRadius(double radius) throws NegativeRadiusException
Next, we need to include an if clause in the body of the setRadius method such that a NegativeRadiusException is thrown if the value of the method argument variable, radius, has a negative value. This is illustrated in the code below.

 public void setRadius(double radius) throws NegativeRadiusException

 {

 if (radius < 0)

 throw new NegativeRadiusException(

 radius,

 "radius of a circle cannot be negative"

);

 this.radius = radius;

 }

Now we may be inclined to think that we are done with the required modifications to the Circle class, however if we take a closer look, we find that is not the case. If we were to compile the modified Circle class as is, the compiler would return the following error message:

 6: unreported exception NegativeRadiusException; must be caught or declared to be thrown

Note: the ‘6’ indicates line six of the Circle class source code (Circle.java).

If we refer to the original Circle class definition previously stated in the lab, we find that line six points to the class constructor. Since the constructor uses the recently modified setRadius method to initialize the value of the radius instance variable, we must handle the case where a NegativeRadiusException is thrown by the method. This can be accomplished in one of two ways, either by nesting the setRadius method call [in the body of the constructor] inside a try - catch block, or by declaring the constructor throws a NegativeRadiusException. In this case we want to do the latter. Our complete (modified) Circle class definition is listed below.

public class Circle

{

 private double radius;

 public Circle(double radius) throws NegativeRadiusException

 { this.setRadius(radius); }

 public void setRadius(double radius) throws NegativeRadiusException

 {

 if (radius < 0)

 throw new NegativeRadiusException(

 radius,

 "radius of a circle cannot be negative"

);

 this.radius = radius;

 }

 public String toString()

 { return "circle: r = " + this.radius; }

}

Test Circle and NegativeRadiusException Classes

Use the following application code to demonstrate to the instructor that the modified Circle and new NegativeRadiusException classes are functioning correctly.

public class Test

{

 public static void main(String[] args)

 {

 char letter;

 Circle c;

 do

 {

 System.out.print("Enter the radius of the circle: ");

 try

 {

 c = new Circle(SavitchIn.readLineDouble());

 System.out.println("\n " + c + "\n");

 }

 catch (NegativeRadiusException nre)

 {

 System.out.println("\n " + nre.getMessage() + "\n");

 }

 System.out.print("Continue (Y/N)? ");

 letter = SavitchIn.readLineNonwhiteChar();

 System.out.println();

 }

 while (letter == 'Y' || letter == 'y');

 }

}

