Lab 8 - Inheritance

Introduction

In this lab, we will examine how to create classes that inherit characteristics from another class. We will use the principle of inheritance to make a more specific and useful class called Dog that inherits many of its characteristics from the PetRecord class discussed in Chapter 5 of the text. We will also use the principle of overriding to modify some of the methods that we will inherit from the PetRecord class.

Inheriting from Another Class

As stated in the problem definition of this week’s homework assignment, we are asked to define a class Dog, which inherits from the PetRecord class defined in the text. We shall begin by placing a copy of the PetRecord.java file (from the CD in the back of your book, or the web at http://www.cs.uaf.edu/~cs103/Handouts/PetRecord.java) into our present working directory (the same folder where we’ll store Dog.java). In order to have the Dog class inherit from the PetRecord class, we need to put the following for our class declaration:

public class Dog extends PetRecord

Now we should probably look at what we have just inherited the PetRecord class. We have inherited all the public and private variables (though we can't directly access the private variables), as well as, all the public methods of the class PetRecord. This means that we already have the private variables name (String), age (int), and weight (double). According to the problem statement, there are some things we want to add to the data stored in Dog, namely a variable called breed (String) and a variable called boosterShot (boolean). We can add these by declaring them to be instance variables of our Dog class.

We also inherited a large number of methods from the PetRecord. A large assortment of constructors was given to us along with a bundle of set methods. We also received a method for outputting the information of our class called writeOutput. We will want to override some of these (like the default constructor and the writeOutput methods), and we will want to add some new get and set methods.

Using the super Keyword
For the constructors we create, (the default constructor and maybe one that takes in all the data to initialize) we may want to call the appropriate base class (PetRecord) constructor as well. To do this, we will use the super keyword.

public Dog()

{

 super();

// TODO: initialize the new data (instance variables) that

// the default PetRecord constructor doesn't initialize
}

public Dog(

 String name,

 int age,

 double weight,

 String breed,

 boolean boosterShot

)

{

super(name, age, weight);

// TODO: rest of the initializations

}

We will also want to override the writeOutput() method so that it outputs all of the information from the PetRecord class along with the information that we added in the Dog class. When overriding writeOutput(), we will still want to output the information inherited from the PetRecord class, so we will probably want to make a call to the base class' writeOutput method again using super.

public void writeOutput()

{

super.writeOutput();

// TODO: output the rest of the new information

}

Finally, we need to add some methods to get and set the boosterShot and breed of the Dog class. After this is done, you may want to create a test program that tests the functionality of these methods. You will also read in the information for 5 dogs from the user, make five Dog objects, and then output the name and breed of all dogs that are over two years old and have not had their booster shots.

Final Note

Although it is not necessary for this homework assignment, it is always good to practice your arrays. You could do the list of 5 dogs program by declaring 5 different Dog objects each with a different name, or you could use an array of Dog objects. Try doing it with an array and it will make your code a lot shorter.

