Lab 7 - Arrays
Introduction

Arrays are extremely useful objects in computer programming. We use them to store large amounts of data, which allows us to build programs that can simulate game boards, store data in tables, and make some of our previous code shorter. We will learn a little about arrays as we go through the first two problems of the homework. If you opt to do the last homework problem, there will be no direct hints for you like usual. This lab will then just give you some general information about the use of arrays.

IMPORTANT: In order to receive credit for the lab, be sure to demonstrate your solution to the first homework problem (reversing a character array) to the instructor.

Initializing and Searching Arrays

We will begin with the second problem and look at initializing arrays and searching them for values. The problem instructs us to create an integer array of 10 elements and initialize these numbers to a random integer between 0 and 20. First we need to declare our array of 10 integers:

int[] randArray = new int[10];
This gives us an array of ten numbers (indexed from 0 to 9) that are all initialized to 0. Now we need to set the values for our elements to random integers. So for each element in the array (indexes 0 through 9), we will need to assign the element in the array a random integer:

randArray[index] = (int)(Math.random() * 21);

Remember, you should only be using index from 0 to randArray.length – 1.

Once you have initialized your array, we need to continually ask the users for a number to search for in the array. Therefore, we will need to use a while loop (or do-while) with a sentinel of any negative value. The pseudocode for something like this would be:

// TODO: retrieve user input

while (/* TODO: check if user input is not negative */)

{

 boolean isFound = false;

 // TODO: search array for user input

 // if found, set isFound to true & output where it is found

 // otherwise, output not found

 // TODO: retrieve user input again

}
Fortunately, we should already know how to work out most of the pseudocode listed above. The only part that may prove to be difficult is the searching for the user input inside the array. For this we will need a piece of code to do a sequential search (since the array is unordered) and report back on the results of the search. Here I recommend using a for loop to iterate through the elements of the array, while checking the current element (integer) against the number entered by the user.

Reversing Arrays

We will now take a look at the first problem, the reversal problem. Here we need to define a static method that will reverse any array of characters. Thus we will want to start by making our method declaration that is public, static, takes in an array of chars, and returns an array of chars. It should look something like this:

public static char[] reverse(char[] inChars)

{

 // TODO: reverse the character array and return it

}
Now we need to work on creating the code that will reverse an array. The first thing to notice is that it will be easiest to have some temporary array that will store the reversed characters (we can’t do it all in a single array, as we would be overwriting data that we later want to copy to somewhere else, we need some extra temporary storage space). So we will want to create an array that is the same length as our input array

char[] tempChars = new char[inChars.length];

Now that we have our temporary array, we need to step through the original array from the front to the back and store each letter in our temporary array starting at the back and working forward (in reverse order of how you are walking the input character array).

// TODO: create a for loop starting at index = 0 and

// stopping after index = inChars.length - 1

 tempChars[(inChars.length – 1) – index] = inChars[index];

Finally, we just need to return the temporary array that now has the reversed copy of the input character array. Since we want to pass back the whole array, we need to pass back the variable name without any array brackets (so that we don’t pass back a single element of the array, we instead pass the whole thing).

return tempChars;

