Lab 6 – Static Methods and Variables, Constructors and Overloading
Introduction

The previous two homework assignments (4 and 5) focused primarily on the basics of classes. We will now work with some more advanced features of classes for the current homework assignment (6). Specifically, we will be using static methods and variables as well as working heavily with constructors and overloading of constructors.

IMPORTANT: In order to receive credit for the lab, be sure to demonstrate the working SimpleMath class to the instructor.
Static Methods and Variables

We use static methods whenever we want a method that can be called without first creating an object of the class where the method is defined. Common examples include the SavitchIn class we have been using in all of our homeworks and the java.lang.Math class, which contains numerous mathematical functions for us to use. Static variables can also be used for the same purpose – permit access to the variable in the class without having an object created. Indeed, there are many other reasons for using static methods/variables, however, the first problem of the current homework assignment requires their use for the two reasons previously stated.

In the first problem, we are asked to create a class called SimpleMath. The only operations that we require for this class are addition and subtraction of two doubles. Each method will take in two doubles, perform its respective operation and return a double. The only new feature required of these two methods is to declare them static (by placing the keyword static between the public modifier and the name of the method). The declarations for the two methods should be:

public static double add(double num1, double num2)

{

 // insert code to calculate and return the

 // sum of the two numbers

}

public static double subtract(double num1, double num2)

{

 // insert code to calculate and return the

 // difference of the two numbers

}

We are also asked to include a public constant for the value of π, in our SimpleMath class. You can define PI to as many digits as you wish. Unfortunately, to keep other users from altering the value in other classes we will want to make it constant by using the Java™ keyword final. When you make a variable final, it prevents other users from altering the data stored in the variable. You should declare the PI variable as such:

public static final double PI = 3.14159;

This is really all you need to define for the SimpleMath class. Now just create a test class/program to demonstrate the complete functionality of the new SimpleMath class.
Constructors and Overloading

In the Die class, for the second problem, we are modeling a die that contains both the number of sides and the current value of the die (the face that is pointing up). We have a couple of methods to roll the die, rollDie(), and to read the die, readDie(). You will need to use the Math.random() function as described in the problem description. The unique feature for this problem is the overloading of the constructors. The problem asks for three (3) constructors, one with no parameters (the default constructor), one with a single integer parameter, and one with two integer parameters. The three constructors will have method headers similar to the following:

public Die() // default constructor

{

 // insert code to set the number of sides to 6 and

 // to randomly set the current value of the die

}

public Die(int numSides)

{

 // insert code to set the number of sides to numSides

 // and to randomly set the current value of the die

}

public Die(int numSides, int initValue)

{

 // insert code to set the number of sides to numSides

 // and to set the value of the die to initValue

}

Once you finish implementing the Die class, you will need to create a test class/program that fully tests the functionality of the new Die class.
