Lab 5 - Programming Your Own Classes

Introduction

Up to this point we have learned how to use classes as objects and how to modify already existing classes to have some extra functionality. This week we will practice making a whole class from scratch. This lab will also help you step through homework five. Much of the lab discussion will be rather general and without examples, as much of the coding today will be stuff that we have already done. At the end there will also be some optional discussion on how we could apply some principles from Chapter 5 to the problem.

IMPORTANT: Although you do not have to demonstrate anything to the instructor, utilize this time to work on the homework assignment due Tuesday (10/15). If you have any questions, feel free to ask. Note: attendance is taken.

Writing the Class

Writing your own class is really nothing that you don't already have the tools for. First we design the class (decide what data it needs to hold and what methods we need to have), and then we start the implementation. We first need to declare the data types that we want to be instance variables for our class (the private data for our class). Then we have to implement the methods required. For this assignment, the problem description goes a long way in helping with the design. It tells us the name of the class, the types of variables we need to have as private variables, and it tells us what methods we should have, what parameters they should take, and what they should do. Basically all we have to do is code the methods. Also, we will need to make a test method for this class and test all of the functionality of the Square class that we create (but we have been doing that for a week now). So let's get started.

First we need our usual class declaration with the name of the class (and the fact that it will be public). Then we need to declare our instance variables for our class. The problem description tells us that we need a double called side, so you will want to declare a private double called side (all instance variables should be private). Now we need to start on our methods.

Each method in the problem description gives us an idea of what arguments we need to be passed into our method, what we need to return, and what we need to do inside of the method. If you are unsure as to what this would mean in terms of code for the method, then this is an excellent opportunity to practice the design method mentioned in Chapter 5 of the book. Start with an English (or native language) description of the method. Then write out with pencil and paper what you think the pseudocode should be for the method. Finally go to your computer and translate that pseudocode to Java™. If you work through this design method and you still don't know what to do, you can look at the Triangle class from last week for some helpful hints (the class will be very similar to the Triangle class).

The only method that should be completely new to us is the equals() method. This method takes in an object of type Square and compares the data of the incoming object with the data of the calling object. It then returns a boolean value indicating whether the two values are equal. The method will look something like the following (though you have to insert some of the code):

public boolean equals(Square otherSquare)

{

 // insert code to compare this.side to otherSquare.side and

 // return true or false depending if the two are equal

}

Remember, the this keyword in the previous method refers to the calling object, for example square1 in a call like square1.equals(square2). You don't really need the word this there, since it is implicit, but it does make for code that is easier to read and understand.

Once you have finished with all of your methods, you just need to make a test program. This is best done in another file, in another class, perhaps called SquareTest.

Chapter 5 Challenge

If you finish early or would like to practice more programming later on, here are some things to think about with this homework in relation to Chapter 5 of the text.

Constructors and Overloading

What constructors would you want for the Triangle class? Will this require overloading for your constructors? Try designing your constructors (remember they are primarily used for initializing the object), and then add them to the Square class. Then try creating new Square objects with arguments that you pass to the constructor, i.e. Square a = new Square(5.0). If you are a little confused as to how constructors really work, a good idea is to put some System.out.println statements in each constructor to identify each one individually. Then you can initialize objects in different ways to see which constructors are called each time. You could test something like that in the following way:

Square a = new Square();

Square b = new Square(5.0);
To further practice designing methods and classes you can try to extend the Square class to include more useful functions. There are many functions that could be useful to a user or to a programmer. What are some that you can think of? Some ideas might be: returning the length of the diagonal of the square; or whether one square will fit inside another square; or whether one square will fit in another square if it is rotated 45 degrees (note: this is relating the diagonal to the side).

