Lab 4: Classes, Objects, and Methods
This lab will help you expose you to programming using existing classes, as well as modifying them to add new functionality. We will be stepping through the two problems from the fourth homework assignment to learn these two programming techniques.

IMPORTANT: In order to receive credit for the lab, be sure to demonstrate the working Groceries program (only one of the two implementations) to the instructor. Also, it may be useful to have you book for reference.
Using Existing Classes

One of the techniques we must first learn to master in object-oriented programming is using other people’s code. Code reuse is one of the great benefits of object-oriented programming. Someone creates a class or blueprint for making object, and then everyone else is able to use those objects as much as they want. In the first program, we need to use the Purchase class provided in the book (on the CD, or download it from http://www.cs.uaf.edu/~cs103/Handouts/Purchase.java). We will use version one of this program, though you could just as easily use version two if you wanted.

The first program asks you to use the Purchase class to set the prices of six grocery items and then construct a total bill for a sample grocery list. There are two ways to approach this. The first implementation has the user input all of the information each time (quantity, price, etc.) for every item (first the oranges, then the eggs, then the bagels, etc.). As the user inputs the information we will continuously update the total bill (this implementation uses readInput to read in the information). The second implementation simply hard-codes the names, prices, and quantities of all the grocery items and then ask the user to enter the number of items they would like to buy from each category (this implementation uses almost all of the get and set methods of the class). The second method would probably more closely approximate reality, since it is rare that we ask the customer what they think the price is (it is usually set by the store, or in this case, hard-coded by the programmer). We shall step-through sample for code both forms of implementation.

First Implementation

Here we need a while loop to continually ask the user for information about the purchases. In each loop, we will need to call the readInput method of a Purchase object to allow the user to write in all of the information. We will then output the information on the cost and add it to the current bill. So it appears that for our test class we will need one Purchase object along with a variable to keep a track of the total bill [so far]. Since we will be using a while loop, we’ll also want a sentinel value to check if the user wants to continue adding groceries (probably a character). So let’s begin our program by declaring the following [object and two variables]:

 Purchase groceries = new Purchase();

 double bill = 0.0;

 char keepGoing = ‘y’;
Note that we both declare and initialize each one. The object is initialized with the new operator, and the variables are initialized with values. We can now start our while loop. Inside this while loop, our code will be remarkable similar to the PurchaseDemo code in the book (page 256).

 while ((keepGoing == ‘y’)||(keepGoing == ‘Y’))

 {

 groceries.readInput();

groceries.writeOutput();

// insert code to add groceries.getTotalCost() to the bill

// now ask the user if they want to continue (Y or y), and

// then take the input into the keepGoing variable
 }
Once the user has input all of their groceries and quit the loop, you will need to then to output their total bill, which at this point should be in the bill variable.

Note: when you compile this test file, you will need it to be in the same directory as the Purchase class, otherwise the compiler won’t be able to find the Purchase class to make the objects.

Second Implementation

The nice thing about the Purchase class is the availability of get and set methods, which allow us to have the program set a lot of the information regarding which grocery items are for sale and at what price. The user can then just enter how much of each item they want. The algorithm is as follows: We will create a separate Purchase object for each grocery item we have available. We will then use the setName and setPrice methods on each object to assign the grocery item both its name and price. Then, for each grocery item, we will ask the user how many they want, and store the value in the respective Purchase object using the setNumberBought method. When we total the final bill, we can simply add up all the getTotalCost methods for each object. One nice thing about this implementation is that in the end we could write out a receipt of all the purchases if we wanted (since each purchase has a separate object, and the information isn’t overwritten with each purchase like in the first implementation). Still, this implementation could yet be improved, as this implementation requires a user to enter in a number (greater than zero) for each item, even if they don’t want to purchase that item at all. A skeletal version of the code is shown below.
 // declare all grocery items

 Purchase oranges = new Purchase(),

 eggs = new Purchase(),

 apples = new Purchase(),

 watermelons = new Purchase(),

 bagels = new Purchase();

 double bill = 0.0;

 int numWanted; // the number they want of an item
 // TODO: repeat the next three steps for each grocery item

 // step one: set name and price for oranges

 oranges.setName(“oranges”);

 oranges.setPrice(10, 2.99);

 System.out.println(

 “How many “ + oranges.getName() + “ would you like?”

);

 // step two: enter code to read the user input into numWanted

 // step three: set the number of oranges bought by the user

 oranges.setNumberBought(numWanted);

Once you have completed the above section for each grocery item, you will have set the information for all the grocery items, as well as received/stored the users order.

Finally we have to output the subtotals and the total bill. We can do this by using the getTotalCost method on each and every grocery item. We will want to display this information for each item individually, as well as add it to the total bill. A skeletal version of the code is shown below.
 // TODO: repeat the next two steps for every grocery item

 // step one: print out subtotal for oranges bought

 System.out.println(

 “$” + oranges.getTotalCost() + “ for “ + oranges.getName()

);

 // step two: add oranges.getTotalCost() to the bill
 // TODO: print out the total bill

Modifying Existing Classes
Now that we have learned how to use existing classes, we will now look at modifying them. When we need some extra functionality in a class that the original author did not provide, we are sometimes able to edit the class and add what we want to it. In the future, we will learn how to do this without modifying the source code for the original class.

For the second problem in homework four, there already exists a class (Triangle) that stores and returns the basic information that triangles have, namely the base and the height. But given this information, it is very easy to calculate the area, so we might as well have a method that does this for us. First we need to declare our method. From the problem description, it tells us that it should return a double and not accept any parameters, so we should start the declaration as so:

 public double getArea()

 {

 // insert code to calculate and return the area

 }

All that is left to be done is fill in the code in the method (what we call the implementation). We should note two things here. The instance variables are available to this method, so it can directly access the base and height of the particular calling object. Also, the only code we really need here is to return the calculation of the area (0.5 ∙ base ∙ height). Return statements can take one of two forms:

 return; // for void methods- don’t return values
 return <expression>; // returns a value
We will want to use this second type, inserting the correct expression in place of the <expression>.

Once we have done this, we will be done with the Triangle class. Be sure to recompile so you changes will take effect! We only need to create another file to use the modified Triangle class to test our new method. Note that when you output the area in the test file, you need to use the getArea method that you just created!

Documenting Classes (optional): javadoc

The javadoc tool takes in a .java file and produces HTML documentation for any public classes that are located in the file (and there should only be one public class in that file). If you go to http://java.sun.com/j2se/1.3/docs/api/index.html you will find a giant web page that describes every class you can use in the Java™ SDK. This page is produced using javadoc, and any class that you document using javadoc will look very similar to this (though it won’t have as many classes and methods in it). Since these pages are a common way for most Java™ programmers to find documentation, other Java™ programmers will find it very easy to read any similar documentation about your own classes that you produce. So let’s try an example…

First open a DOS window (go to Start->Run and type cmd if using Windows 2000 or NT, or type command if using Windows ME, 98, or 95). You will then need to use the cd command until you get to the directory holding the files that you want to javadoc. Once you are there, just type the following command (substituting your filename(s) for Triangle.java):

javadoc Triangle.java

If javadoc is correctly installed on your machine, it will go through a few operations and report about them in the window. If all goes well, the command will finish without any errors being reported and there will be some HTML files that will have been produced in your directory. You can then open the index.html file and you will see the documentation for your own class. This documentation will at the least contain the class names and method names for your class. Depending on how you commented your java file, it may also have descriptions with your methods and classes. In general, if you document like the author of your book, Walter Savitch, documents, you will generate pretty good documentation from the javadoc tool. If you would like to the detailed specification for commenting your files for javadoc, see

 http://java.sun.com/j2se/javadoc/writingdoccomments/index.html.

