Lab 3: Algorithms and Flow Control

In the last two labs, we have learned about compiling and running Java programs as well as some of the basic Java syntax and data types. This week we will be looking at different kinds of flow control. Flow control does many things: it can allow a program to execute certain statements conditionally (they are only run if a certain condition is met, such as a user input being equal to 'y'); and it can allow for the repeated execution of statements (the program can output something 20 times without you having to program all 20 of them). These two forms of flow control are called branches and loops, respectively. We will be stepping through the first two programming problems discuss the two forms of flow control.

IMPORTANT: In order to receive credit for the lab, be sure to demonstrate the working Temperature Conversion program to the instructor.

Branches

There are 2 main types of branches, if-else and switch. We use branch statements whenever there is some code that we only want run if a certain condition is met (like a specific key is pressed or a particular number is entered). We mainly use the switch whenever we have a single variable that we want to compare against many different values. Otherwise, the if-else statement tends to be used. In the case of our temperature conversion problem, we will probably want to use an if-else statement to distinguish whether the user wants to perform Fahrenheit-to-Celsius or Celsius-to-Fahrenheit conversions. Before we get started with asking for input though, we need to start a do-while loop (so that the conversion process can be repeated as many times as the user wants). We will want to first declare our variables and start a do-while loop. Since we will be taking in user input (characters) and a whole number for the input temperature we will need to declare one character (char) and one integer (int) variable. Since we need to output the decimal or fractional information for the answer, we will also need to declare a double. The reason that we declare these now instead of when they are needed is because we don't want to declare variables inside loops. Once you have written the usual file headers (your class declaration and main function declaration), you will want something like the following:

char answerLetter;

int inputTemp;

double outputTemp;

do

{

Now that we have our loop set up, we can now take in the user's choice on which conversion they want to run:

 System.out.println(

 "Please enter F for Fahrenheit-to-Celsius, or " +

 "C for Celsius-to-Fahrenheit: "
);

 answerLetter = SavitchIn.readLineNonwhiteChar();
Once we have the user's preference we are going to want to compare the user's input with the characters 'f', 'F', 'c', and 'C'. If it is not any of these, we will want to keep asking until the user finally enters one of the four options. We can do this by putting in a while statement using a comparison of the answerLetter against all four possible valid entries (we will cover while statements and other loops in a second). We will use the AND Boolean operator (&&) to accomplish this. This way the whole condition will turn false if the character is any one of the four valid entries (and then we will continue on past the while loop). One possible implementation is:

 while ((answerLetter != 'F') && (answerLetter != 'f') &&

 (answerLetter != 'C') && (answerLetter != 'c'))

 {

 System.out.println("\nInvalid input!\n");
 System.out.println(

 "Please enter F for Fahrenheit-to-Celsius, or " +

 "C for Celsius-to-Fahrenheit: "
);

 answerLetter = SavitchIn.readLineNonwhiteChar();

 }

We now know that the program will not get past the while loop until the user inputs a correct value. So now we can compare the answerLetter once more against each letter and then begin each conversion section. Since we don't care whether or not the letter input is lower case or upper case, we will want to again use the OR Boolean operator (two pipes, located above the backslash character (\) '||') to see if it is either the lower case version or the upper case version. Inside the body of each if block, you will want to insert the code to read a number from the user, do the conversion, and output the answer (for the Fahrenheit to Celsius one, you can copy and paste most of the code from last week's conversion). It will look something like this:

 if ((answerLetter == 'f') || (answerLetter == 'F'))

 {

// insert code to do Fahrenheit to Celsius conversion here.

 }

 if ((answerLetter == 'c') || (answerLetter == 'C'))

 {

// insert code to do Celsius to Fahrenheit conversion here.

 }

Though we have done the conversion, we are still not quite done yet (remember the do statement hanging out at the top?). We need to ask the user whether or not they want to do another conversion. Again we will ask the user for input, and again we will compare that input against the lower and upper case versions of the valid input ('q' or 'Q'). This time though, the comparison will be done in the while condition of the do-while loop. It will look something like the following:

 System.out.println(

 "Press Q to quit, or any other character to do another conversion."

);

 answerLetter = SavitchIn.readLineNonwhiteChar();

}

while ((answerLetter != 'Q') && (answerLetter != 'q')); // end do-while loop
You will of course need your standard headers and closing curly braces on this program, but otherwise you should be done. Note the reason for the do-while loop. Since we always want to ask for a conversion at least once, the do-while loop is great since the body of the loop will always execute at least once. We will get more into a discussion of loops in the next section.

Loops

Even in the first problem of this homework, you are required to use some loops. Loops are useful whenever you want to repeat statements multiple times (like asking a user for correct input until they give it, asking the user if they want to do something again, or repeatedly taking in input or making calculations). There are three kinds of loops that we can use, the while loop, the do-while loop (which is exactly like the while loop except it always executes at least once), and the for loop.

In our second problem, we are asked to keep tabs on some information as a user enters a list of non-negative integers. We need to keep track of three things, the largest integer, the smallest integer, and the average (mean) of all the integers. Note though, that the average of all the integers will be the sum of all the integers divided by the count of all the integers. Thus we are probably going to want 5 integer variables:

 int current, // current number the user entered
 largest, // largest number the user has entered
 smallest, // smallest number the user has entered
 sum = 0, // sum of all integers so far

 count = 0; // number of integers entered so far
 double average; // average of all the numbers (calculated at the end)
Note that we have already initialized some of the above variables. Some of the variables are just going to be incremented (count) or added to (sum) inside the loop so we clear them out before the loop. The largest and smallest variables have been assigned so that the compiler doesn’t complain about uninitialized variables.

Now we’ll need to enter some loop in such a way so that if the user enters a negative number, we stop the loop and continue the program. The following implementation used here is just one possible method. It is often called “priming” the loop, where you copy some of the main loop body outside of the loop (usually asking for input from the user). This is supposed to be similar to priming a pump, where you put a little liquid on the pump to get it going so that it can pump more liquid for you. We are going to prime our while loop with a request for user input and some other special statements that I will mention in a second.

System.out.println("Enter an integer(neg. to quit): ");

current = SavitchIn.readLineInt();

smallest = current; // smallest number seen so far

largest = current; // largest number seen so far

Note that we not only ask for the first input value from the user, but we also start processing some of the information on it. We set both our smallest and largest values to the current number. The reason is two-fold: We need to have smallest and largest set to something before we start doing comparisons against it; and the current number that we see is both the smallest and largest number we have seen so far (we have only seen one number!). Note that if the user enters a negative number, we don’t want to enter our loop, otherwise we will end with negative numbers in the smallest and largest variables.

Once we have the loop primed we can then start our loop. We’ll use a while loop here (for no particular reason other than a do-while doesn’t fit now that we’ve primed the loop). The loop will be set up for you, but you will need to insert the code in place of the comments to actually do anything in the loop.

while (current >= 0)

{

 // insert code to increment count variable

 // insert code to add current to the sum

 // insert code to compare the current number against the

 // largest number. If it is greater than largest then

 // replace largest with the current number.

 // insert code to compare the current number against the

 // smallest number. If it is less than the smallest

 // then replace the smallest with the current number.
 System.out.println("Enter an integer(neg. to quit): ");

 current = SavitchIn.readLineInt();

}

When the user enters a negative number, we will break out of the loop. Once we get past the loop, we will need to do some calculations to determine the average and output all of the requested information (you will need to output the largest and smallest integers, as well as the average). One note concerning the average: since both the sum and the count are integers, and we need to do a division of the two, we must be careful not to do integer division. So we must make one side or the other a double or a float. In previous programs, we did this by adding a “.0” to one of the constants. Unfortunately, there are no constants this time – there are only variables. So we have to use an operator called a cast. You can cast one variable into a different type by enclosing the desired type inside parentheses and putting it in front of the variable as so

(<new_type>)<variable>; // uses the variable as if it were of

 // type <new_type>

So in our case we want to cast one of our variables into a double just before we do the division. Note, the variable sum will still be considered an integer after the statement. It is only considered a double for the duration of the expression (or statement) in which the cast was used.

average = (double)sum / count;

Now we have all the information that we need for the problem and can just output it to the screen (and the user). You will probably want to check the smallest (or largest) number to see if they are negative. If they are negative, you then know that the user didn’t input any non-negative integers (ask yourself why).

Hints for the third problem

Use two nested for loops. Let the outer one control the number of rows or lines that are printed. Let the inner one control the number of columns or symbols on each line. Inside all of the for loops you will want to output single asterisks (using the System.out.print() statement, not the System.out.println() statement). At the end of each line you'll want to output a new line before starting the next line. See the online lecture for Chapter 3 for an example of a nested loop that draws a triangle. It will be in the “Complex Loops” section.

