Lab 2 – Basic Java Syntax

Now that you have learned how to compile and run Java programs in TextPad™, the next step is to learn about the basic language of Java and how one goes about writing programs. This lab will serve as a good reference and help you get familiar with the most basic components of Java, the primitive types, along with introducing some other useful syntax. The lab sheet might be a little long, but it should give you lots of useful information as we walk through the Average3 program from your homework.

IMPORTANT: In order to receive credit for the lab, be sure to demonstrate the working Average3 program to the instructor.

Comments

The first syntax that one often learns in a language is the comment operators. Comments are any text in the program that you do not want the computer to execute (run). Though they don't directly affect how a computer understands or runs a program, they are extremely important for us humans that are trying to write the programs. Comments are most often used at the beginnings of files to identify who wrote the program and what is the purpose of the program. Comments should also be used on lines where the meaning of the code is not completely evident. In the computer industry, it is rare that you will be the only person looking at your code, so make sure you use adequate comments to explain even things that may seem apparent to you, the writer. When in doubt, comment! It is even more important to comment when working with object oriented languages or projects, as the idea of reuse requires that others will be reading your code and your comments.

In Java, there are two ways of making comments. Use the single line comment syntax // if you are just making a comment that will only finish out one line. If you would like to make multiple lines of comments, you can enclose them between the opening /* and the closing */ syntax around your comments. Thus the following are valid comments in Java (if you paste them into a Java program in TextPad™, you will notice that the color should change to green):

/*

 Eric Davis

 Computer Science 103

 Homework # 2- Average3 program

 This program will read in three integers and output their average.

*/

public class Average3 // my program class (another valid comment)

{

public static void main(String [] args) // main function

{

It is a good idea to put some sort of comment header (like above) at the beginning of all your files to explain what the file is and help others (including your grader) to understand what they are looking at. Go ahead and start putting in a comment header and the class/main headers as seen above into your file Average3.java.

Variables and identifiers

Variables are used all the time in computer programming. Variables are just ways for a computer to store information. They are like post office boxes. Each has a name (or an address in the post office example) and each can some sort of data such as numbers, letters, or the ideas of true and false. We call the data that a variable holds the value of the variable. In our FirstProgram.java we had a variable that was called answerLetter that could hold the character that a user inputted into the keyboard when asked if they still wanted to talk. In this case the value of the variable was usually either 'y' or 'n' while the name of the variable was answerLetter.

There are lots of names we can use for our variables, but there are a few rules about naming that we must abide by to have valid programs. We cannot name a variable with the same name as a reserved word (such as "if", "for", "while", etc.). We can't start a variable name with a number. Variable names can only be composed of letters, numbers, and the underscore character "_". Other than that, you can name any variable anything you would like, but it is a good idea to assign it a name that will give the reader an indication of what the variable is used for (like "userInputCharacter" instead of the variable name "x").

Primitive Data Types

No, this is nothing like data types beating rocks together to make fires, it is just the fancy way of talking about the most basic building blocks in the Java world. Data types are just ways of telling the computer what data a variable holds. There are 8 different primitive data types: 4 integer types (byte, short, int, and long) for numbers that have no remainder, 1 character type (char) for letters, 2 floating point or real number types (float and double) for decimal point numbers, and one boolean type (boolean) for variables that can only be true or false. The ones we use usually are int (sometimes long), double (sometimes float), and char. For more information on the size and range of these types, see the table on page 57 of the book.

We can now start declaring some of the variables that we might need for our Average3 program. Since we are taking in three whole numbers, let’s declare three integers. We declare variables in the following general way:

<data-type> <variable1>, <variable2>, … ,<variableI>;

In our case, this might look like:

int userInput1, userInput2, userInput3;

or any other statement using your own variable names. This statement should probably come somewhere near the top of our main function. Now that we have variables for taking in the user inputs, we should try and think of any other variables that we will need to declare in our program. Since we need to display the average of the three variables, we will probably need some sort of average variable. Since we need to display the answer in decimal format, we will want this to be a double. It might also be good to have a variable for the summation of the three integers and, for reasons explained later, we will also want this to be a double. Thus we will probably want another variable declaration that looks like:

double sumOfIntegers, averageOfIntegers;

Another common type is called the String. A String is basically a bunch of characters. A String is not really a primitive data type in Java, it is actually a class (we’ll get to classes in a couple of weeks). We won’t be dealing with Strings directly in this assignment.

Operators

There are many symbols in Java that do things to variables, changing or combining them in some way, and these are called operators. Operators do things like assign values to variables, add variables together, subtract them, compare them, or any number of things that you want to do to your variables. Operators can take different numbers of arguments. Most operators take two arguments, like the addition operator, which has one argument on each side of the plus sign. Some take only one argument. There is even one operator that takes 3 arguments. Some symbols in Java actually work as different operators depending on the number or type of the arguments (like “+” and “-“). The main ones that we will deal with today are assignment, equality, and the basic math operators.

= (assignment). This operator will take whatever value is on the right of the operator and assign it to the variable on the left of the operator. Thus in the case of this example,

intVariable1 = intVariable2

the value of intVariable2 is copied and stored into the variable intVariable1. If the variables or expressions on either side of the assignment operator are of different types, Java will try to automatically convert the data from one data type to the other. Thus in the following:

variableInt1 = variableDouble1

where variableInt1 is of integer type and variableDouble1 is of double type(decimal number), Java will automatically convert the double value to an integer by truncating the value at the decimal point and returning a whole number (so the value 4.6 would be converted to 4). Do not get the assignment operator confused with the equality operator (==)!

We are going to need the assignment operators quite a bit in all of our programs, so remember it. In Average3.java we need to assign the integer variables that we declared with the user’s input after our prompt. You should insert some code into your program that looks something like this (with maybe different variables):

System.out.println(“Please enter the first number: ”);

UserInput1 = SavitchIn.readLineInt();

You will need to do the above code three times to get all three numbers from the user.

== (equality). This operator is always confused with the assignment operator and causes problems for both experienced and inexperienced programmers. Just remember, two equal signs means equality and one equal sign means assignment. This operator compares the left and right-hand arguments to see if they are the same. FirstProgram.java used this operator to see if we wanted to continue talking or not. The result of this operator is basically a truth-value: either true or false. If the two values are the same (and it will do some type conversions if necessary so be careful), then it will return true, otherwise it returns false. The equality operator doesn’t work like you probably think for objects and classes (like Strings). If you want to compare strings in Java, you will have to use the <string_object>.equals(<string_object>) method. We will get into that more at a later time.

!= (non-equality). This operator tests to see if the two arguments are not equal. The ! symbol in Java usually stand for “Not” so that helps in remembering that this is “not equal.” Other useful ones are >= (greater than or equal to), > (greater than), <= (less than or equal to), and < (less than). All are read from left to right.

+ (addition). This operator will add two numbers together. If the two variables are of different types, it will do some conversions (usually to the most-general data type of the two). Be careful when using this operator with Strings. If either of the arguments is a String, then it will convert the other argument to a string also and then concatenate the two together (paste one string onto the end of the other string). Thus 5+4 evaluates to 9, but “5” + 4 evaluates to “54” since the first operand is a string. Looking at our Average3 problem, we want to combine all three numbers that we have so that we can later do the average. Let us use the addition operator. The instruction to get the sum of the three numbers should look something like this:

sumOfIntegers = userInput1 + userInput2 + userInput3;
Note that we can use multiple operators in a single instruction (an operator with its operands or variables is often called an expression in the books).

- (subtraction). This operator will subtract two numbers. If used in front of only one number, it will act as a unary minus (makes the number negative).

* (multiply). Multiplies two numbers and returns their product. 4*6 = 24.

/ (division). This is another operator that causes programmers lots of problems. If one or more of the operands are double (or float) values, then division works as normal and returns a double value. Thus 5.0/2 = 2.5. But if both operands are just integers (or long, short, or byte), then the computer will do what is called integer division. It will divide the numbers and drop anything coming after the decimal point. Thus 5/2 = 2 with no remainder reported. This is the reason that we used a double type for the sumOfIntegers variable. This way the following code will work correctly:

averageOfIntegers = sumOfIntegers/3;

If sumOfIntegers had been an integer type, the above statement would not have worked correctly as both arguments would have been integers and the division would drop all information after the decimal point. To fix this problem with having sumOfIntegers being an integer, we could have done the following (because the 3.0 is considered a double) and gotten the correct answer:

AverageOfIntegers = sumOfIntegers/3.0;

or

AverageOfIntegers = (double)sumOfIntegers/3;

You might wonder why this latest version works, if sumOfIntegers is an integer type and the number 3 is an integer type. The reason why, is because when we put a data type in parentheses (like we just did with double) it will convert the integer value into a double for that calculation only. This is called type casting.

% (modulo). This operator gives you the remainder that was lost when you divide with two integers. Thus 7/3 is 2 and 7%3 is 1since 3 goes into 7 two whole times with a remainder of one. Some other examples follow for modulo:

9%3 = 0 (it divides evenly)
10%3 = 1
11%3 = 2
12%3 = 0

4%10 = 4
134%10 = 4
(134%100)%10 = 4
(134%100)/10 = 3

+ (string concatenation). As mentioned before, this operator looks exactly like the addition operator, but works whenever one of the variables around it is a String. This makes it very easy to output the value of variables. Concatenation just means taking the second string and appending it or gluing it to the end of the first string. Thus “Hi” + “ There” results in “Hi There” and “Howdy” + 7 + 4 results in “Howdy74”. Now that we have calculated the average of our three numbers, we need to output the value so that we humans can see the answer. You will probably use a statement similar to this:

System.out.println(“The average is “ + averageOfIntegers);

Now we have basically finished the Average3 program. You will want to make sure you match the opening curly braces, {, with closing ones at the end, }. You will probably need two of those. Go ahead and try to compile the program and see what happens. We will also continue on with other operators that will be useful in you other programs this week.

++(increment). The increment operator is just a quick way of adding 1 to a number. This operation is so common, that they made a special operator just for the operation. You can use the ++ operator before a variable or after it. Usually it doesn’t make a difference which one you use but they do have different meanings. If the ++ is in front of the variable, the variable is updated and then the value is returned. If the ++ is after the variable, the variable is updated after the current value of the value is returned. When working with objects, it is usually better to put the ++ in front of the variable (it requires less memory). To give an example where the two situations are different, imagine that integer1 is an integer variable with the value 3:

integer2 = ++integer1 // integer2 = 4, integer1 also contains 4

while the following statement results in something different:

integer2 = integer1++ // integer2 = 3, integer1 contains 4.

The difference is subtle, but can be important sometimes. This increment operator will probably be very useful for your second homework problem (the heads/tails count problem). If a user inputs a heads, you will want to increment a heads counter variable. If the user puts in a tails, you will want to increment a tails counter variable.

--(decrement). Like the increment operator, only it subtracts 1 from a number.

Hints for the other problems
If you want some hints, here are some design hints for remaining problems in the homework. If you feel you are getting stuck on a part of a particular problem, try refining the design step by step in English before trying to translate the design into Java code.

Coin Flipping problem

Declare two integer variables, one for a count of the heads, one for the tails.

Initialize their values to zero.

Repeat the following 8 times:

Ask the user for heads or tails.

Take in the user input.

If the user pressed ‘h’

add one to the count of heads.

If the user pressed ‘t’

add one to the count of tails.

When you are done getting all of the coin flips then

Output the number of heads.

Output the number of tails.

Output the percentage of heads.

Output the percentage of tails.

Temperature conversion problem

Declare two variables, one integer for the input Fahrenheit temperature,

one double for the output Celsius temperature.

Prompt the user for the input degrees in Celsius.

Take in the user input (hint: SavitchIn.readLineInt())

Perform the conversion.

Output the temperature in Fahrenheit and in Celsius.

