Lab 11 - Vectors
Introduction

Similar to arrays, vectors are containers for storing objects. However, unlike arrays, vectors have the ability to dynamically increase their capacity (the number of elements they can store). This feature alone proves to be quite useful when writing programs that must store an unknown amount of data. In the current assignment, we are asked to use our knowledge of inheritance to extend the functionality of the Vector class, provided by the authors of the Java language, to specifically hold and retrieve String objects. We are then asked to use an instance of the newly defined StringVector class to store a list (of arbitrary length) of strings entered by a user and then display the list in reverse order.

Defining the StringVector Class

Since were would like to use the predefined Vector class, we need to pass this information to the compiler. The following statement must appear at the top of the StringVector.java file before any other code.

import java.util.Vector;

The next step would be to define the skeleton structure of the new StringVector class. Since our new class will be a descendent of the Vector class, we will begin the class definition with the following line of code (which we should be quite familiar with).

public class StringVector extends Vector

Moving along, the assignment states that the new class should define a default constructor, as well as four public methods. The first method, getElementAt(int index), will return the String object stored at the specified index in the vector. The second, getFirstElement(), will return the String object stored at index 0 in the vector. The third, getLastElement(), will return the String object stored at the last occupied index in the vector. Finally, the last method, toStringArray(), will return the contents of the vector as an array of String objects (order is preserved). This is all the necessary information we need to complete the remainder of the skeleton structure of the new StringVector class. A complete listing of the code is shown below.

import java.util.Vector;

public class StringVector extends Vector

{

 public StringVector()

 { /* insert code here */ }

 public String getElementAt(int index)

 { /* insert code here */ }

 public String getFirstElement()

 { /* insert code here */ }

 public String getLastElement()

 { /* insert code here */ }

 public String toStringArray()

 { /* insert code here */ }

}

All that is left to do is insert the code to implement the default constructor and each of the four public methods.

If we step back for a moment and think about the purpose of defining the StringVector class, we will see that the implementation code for each of the constructor and first three methods (getElementAt, getFirstElement, getLastElement) should only be a single line. Why? Well, if we refer to a list of the methods available in the Vector class (http://java.sun.com/j2se/1.3/docs/api/java/util/Vector.html), we notice that the authors of Java have already created four methods with almost identical functionality and names (i.e. getElementAt vs. elementAt, etc.). The only difference, besides the names of the methods, is that the methods defined in the Vector class return type Object, whereas we want to return a type String, which is a descendent of the Object class. So how do we change object from one type to another? As for the toStringArray() method, we might be tempted to use the following code:

public String[] toStringArray()

{

 return (String[]) this.toArray(); // WILL NOT WORK!!!
}

Although this code is syntactically correct, it will generate a ClassCastException when called in another program. This is due to the fact that the toArray() method returns an array of type Object, which just happens to hold String objects. However, since the returned array of type Object was never declared to be and array of String objects, it is illegal for us to cast a (parent) Object array to a (child) String array. Instead, we can use the other toArray(Object[] a) method available in the Vector class, which lets us pass the type of array we want. The following code correctly returns an array of String objects.

public String[] toStringArray()

{

 String[] s = new String[this.size()];

 toArray(s);

 return s;

}

Note, we could have also used a for loop to iterate through the elements of the Vector and store them in a String array (to be returned) as well.

Using the StringVector class

As we mentioned earlier, a StringVector object will have the same functionality as an object of the type Vector, except it will have the additional four methods, we just defined, available as well. As an example, the following lines of code declare and initialize a StringVector object and load it with three separate String objects.

StringVector sv = new StringVector();

sv.add("Hello");

sv.add("this");

sv.addElement("is");

Notice how both the add and addElement methods perform the same function (as stated in the Java documentation):

“Adds the specified component to the end of this vector, increasing its size by one.”

