Lab 10 - Exception Handling
Introduction

In this assignment we will begin worrying about creating robust programs that hopefully don’t crash when someone types something incorrectly. The idea is to recover from an error and allow the user to keep working. We will make two solutions to the second problem in this assignment: first applying the try and catch structures for exception handling; the other way (which is actually preferred in most cases) is to just test parameters before calling the method. You will want to first download the SafeIntArray.java and SafeIntArrayTest.java files from the homework page on the class website. You will want to save both homework problems separately, so either have two directories that you store them in, or change the name of one of the classes.

try and catch
There are two places that could crash in the SafeIntArrayTest program: when we are setting the array to random integers; and when we are looking at an index that the user has given us. One could put a try-catch block around the setting of the array, but that probably isn’t necessary, as it is hard-coded and not subject to change by the user (thus if it doesn’t crash now, it shouldn’t crash in the future). The part we really need to protect is when we retrieve an element at a user-supplied index.

The problem tells us that if we generate an error when retrieving the element, we should warn the user and then allow them to input more indices as if nothing ever happened (notice, we are warning the user and then returning to a safe state). Since we want to continue taking input, we will probably want our try/catch statements inside of the while loop (so that we can stay in the loop on an error and continue taking input). Figure out where you would like to put the try/catch blocks and try them out. Remember, try/catch blocks (for catching ArrayIndexOutOfBoundsExceptions) look something like this:

try

{

 // statements you want to try to execute but

 // may produce an exception, in this case, trying to retrieve

 // something in an array using a user-supplied index

}

catch(ArrayIndexOutOfBoundsException e)

{

 // warn the user by printing the error message

}

A couple of useful methods to use when you are dealing with exceptions are getMessage and printStackTrace. Try using them in your catch statements and see what they do (or you can refer to the Java™ API documentation):

System.out.println(e.getMessage());

e.printStackTrace();

Prevention vs. Cure

Some of us may have heard the age-old adage that an ounce of prevention is worth a pound of cure. It is true in Java, too. Your program will execute faster if you can detect an error before an exception is created. For example, if you were about to divide two numbers, it is quicker to check for a denominator of 0 than to just call the division and later deal with the exception that is produced. In this homework problem, you will want to check that the index the user supplied is within bounds. If the index is out of bounds you should ask the user for a new index before you try to get the element stored at that index. Again the modifications should be small, but it should prevent the program from crashing when you enter indices of 25 or -10.

Comparison of Solutions

Though the try/catch system is very useful in Java™, it should be no substitute for testing values to prevent exceptions. Getting into a habit of testing values yourself will help you immensely in other languages with different exception handling techniques (because the technique of personal testing is the same in every language). As was mentioned before, testing values is also faster than creating and then dealing with exceptions. Unfortunately, there are cases when we simply can’t test something before we call a method that might throw an exception (file I/O is a good example). In these cases, you should be familiar enough with the try/catch model of exception handling to be able to deal with any problems (note the try/catch model is used in other languages besides Java™).

