## CS 441/641 Homework 0

| You can get runnable .circ files for Logisim from http://www.cs.uaf.edu/2012/fall/cs441/hw0/ |                                         |
|----------------------------------------------------------------------------------------------|-----------------------------------------|
| hw0_0: Basic logic circuit.                                                                  | Δ                                       |
|                                                                                              | Select<br>0                             |
| hw0_1:                                                                                       |                                         |
|                                                                                              | © B Select                              |
| hw0_2:                                                                                       |                                         |
|                                                                                              | B Select                                |
| hw0_3: This is a three input decoder.                                                        |                                         |
|                                                                                              | © Select                                |
| hw0_4: This is a tristate bus, with non-inverting tristate drivers.                          |                                         |
|                                                                                              | A Select                                |
| hw0_5: This is a "D" type flip-flop.                                                         |                                         |
|                                                                                              | D D O O O O O O O O O O O O O O O O O O |
| hw0_6: This is a logic circuit built from analog FET transistors.                            |                                         |
|                                                                                              | select 0                                |

hw0\_7: This is a two-input decoder, driving some downstream logic.



hw0\_8.) An RV bagel toaster is consuming 100 amps at 12 vdc. Is the toaster about to catch on fire?

| hw0_9.) Write some assembly code on the left, to implement the C language function on the right:          |                                                                                                         |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Assembly code:                                                                                            | <pre>extern int bar(int y); /* function prototype */ int foo(int x,int y) {    return 7+bar(y); }</pre> |
| (Pick <u>any</u> real CPU you like!)                                                                      |                                                                                                         |
| at all interested) through 3 (worth about a week) through mechanics of PCB fabrication (copper traces, mu |                                                                                                         |
| mechanics of semiconductor fabrication (photoli                                                           | thography, etching, masking)                                                                            |
| high performance computing general techniques                                                             |                                                                                                         |
| benchmarking load balancing                                                                               | tuning autotuners                                                                                       |
| GPU performance tuning generally, and graphic                                                             | s card massively parallel programming models:                                                           |
| CUDA (popular, but NVIDIA specific)                                                                       | OpenCL (portable, but verbose) MS AMP                                                                   |
| SIMD performance tuning generally, and the sin                                                            | gle instruction multiple data programming models:                                                       |
| x86 four-float SSE x86 eight-                                                                             | -float AVX ARM NEON VFP                                                                                 |
| multithreaded machine programming models                                                                  |                                                                                                         |
| OpenMP pthreads processes (1                                                                              | fork)                                                                                                   |
| multithreaded correctness: memory consistency                                                             | models, locking, atomic operations                                                                      |
| cloud computing, such as Amazon's Elastic Com                                                             | pute Cloud                                                                                              |
| processor virtualization support, such as VT-x C                                                          | PU extensions                                                                                           |
| latest and greatest CPU designs (e.g., Ivy Bridge                                                         |                                                                                                         |
| biological computing (computing using DNA nu                                                              |                                                                                                         |
| quantum computing (computing with "qubits", v                                                             |                                                                                                         |
|                                                                                                           | ± ± /                                                                                                   |