Hash Tables | continued
Prefix Trees

CS 311 Data Structures and Algorithms
Lecture Slides
Monday, November 30, 2009

Glenn G. Chappell
Department of Computer Science

University of Alaska Fairbanks
CHAPPELLG@renber . ans. or g

© 2005-2009 Glenn G. Chappell

Review
Where Are We? — The Big Problem

Our problem for much of the rest of the semester:
= Store: a collection of data items, all of the same type.

= Operations:
= Access items [one item: retrieve/find, all items: traverse].
= Add new item [insert].
= Eliminate existing item [delete].

= All this needs to be efficient in both time and space.
A solution to this problem is a container.

Generic containers: those in which client code can specify the
type of data stored.

30 Nov 2009 CS 311 Fall 2009

Unit Overview
Tables & Priority Queues

Major Topics

v'= Introduction to Tables <« Lots of lousy implementations
e e)

v'= Priority Queues

v'= Binary Heap algorithms > Idea #1: Restricted Table

Y= Heaps & Priority Queues in the C++ STL |

v's 2-3 Trees
v'= QOther balanced search trees

(part)= Hash Tables } Idea #3: “Magic Functions”

= Prefix Trees
= Tables in various languages

>~ Idea #2: Keep a Tree Balanced

30 Nov 2009 CS 311 Fall 2009

Review
Introduction to Tables

Sorted Unsorted Sorted Unsorted Binary Balanced (how?)
Array Array Linked List | Linked List | Search Tree | Binary
Search Tree
Retrieve | Logarithmic | Linear Linear Linear Linear Logarithmic
Insert Linear Constant??? | Linear Constant Linear Logarithmic
Delete Linear Linear Linear Linear Linear Logarithmic

Idea #1: Restricted Table

= Perhaps we can do better if we do not implement a Table in its full generality.
Idea #2: Keep a Tree Balanced

= Balanced Binary Search Trees look good, but how to keep them balanced efficiently?
Idea #3: “Magic Functions”

= Use an unsorted array of key-data pairs. Allow array items to be marked as “empty”.

= Have a "magic function” that tells the index of an item.

= Retrieve/insert/delete in constant time? (Actually no, but this is still a worthwhile idea.)
We will look at what results from these ideas:

= From idea #1: Priority Queues

= From idea #2: Balanced search trees (2-3 Trees, Red-Black Trees, B-Trees, etc.)

= From idea #3: Hash Tables

30 Nov 2009 CS 311 Fall 2009 4

Overview of Advanced Table Implementations

We will cover the following advanced Table implementations.

= Balanced Search Trees
= Binary Search Trees are hard to keep balanced, so to make things easier
we allow more than 2 children:
v = 2-3 Tree
= Up to 3 children
v = 2-3-4 Tree
= Up to 4 children
v’ = Red-Black Tree
= Binary-tree representation of a 2-3-4 tree
= Or back up and try a balanced Binary Tree again:
v'= AVL Tree

= Alternatively, forget about trees entirely:
(rart) = Hash Tables

= Finally, “the Radix Sort of Table implementations”:
= Prefix Tree

30 Nov 2009 CS 311 Fall 2009 5

Review
2-3 Trees [1/4]

A Binary-Search-Tree style node is
Y Y 2 subtrees 2- node Like a Binary-

a 2-node. 1 item Search-Tree
= This is a node with 2 subtrees ordering / \ node
and 1 data |tem_ e T Gt
i , : <10 10<:
= The item’s value lies between the
values in the two subtrees.
In a “2-3 Tree” we also allow a 3 subtrees 3-hode
node to be a 3-node. 2 items
o _ ordering
. Thls IS a nOde Wlth 3 SUbtreeS
and 2 data items. . .<3

= Each of the 2 data items has a
value that lies between
the values in the corresponding 4 subtrees ~_4-node
pair of consecutive subtrees. 3 items 2 5

_ . ordering
Later, we will look at “2-3-4 trees”, 7 /N T
which can also have 4-nodes. . <2 {i2<.55

30 Nov 2009 CS 311 Fall 2009 6

Review
2-3 Trees [2/4]

A 2-3 Search Tree (generally we just say 2-3 Tree) is a tree with
the following properties.

= All nodes contain either 20
1 or 2 data items. T~
= If 2 data items, then the 712 32
first is < the second. AN AN
= All leaves are at the 2 4] [9] (18] |[2328] |35

same level.

= All non-leaves are either 2-nodes or 3-nodes.
= They must have the associated order properties.

To retrieve in a 2-3 Tree:

= Begin at the root, and go down, using the order properties, until the
item is found, or clearly not in the tree.

To traverse a 2-3 Tree:
= Use the appropriate generalization of inorder traversal.
= Jtems are visited in sorted order.

30 Nov 2009 CS 311 Fall 2009 7

Review

2-3 Trees [3/4]

To insert in a 2-3 Tree:
= Find the leaf that the new item should go in.
= If it fits, then simply put it in.

7 12 —

/

N\

..... > (4] |9

7 12
N

18

2

4(19] |18

= QOtherwise, there is an overfull node. Split it, and move the middle
item up, either recursively inserting it in the parent, or else creating

a hew root.
50
o 7 12| =——>»
AN
2 4l [o]| 18] [2

12

712 —

N

18 2|15

30 Nov 2009

CS 311 Fall 2009

Review
2-3 Trees [4/4]

To delete in a 2-3 Tree:

= Find the item. If it is notin a

12

leaf, swap with its successor.

= Do the recursive delete-a-leaf 2 4

procedure.
To delete-a-leaf:

= Easy Case: If the item isin a

node with another item, simply

remove it. 5 4

= Semi-Easy Case: Otherwise, if
the node has a consecutive

sibling with two items, do a
rotation with the parent.

= Hard Case: Otherwise, bring

the parent down, combining it 2 4

with a consecutive sibling.
= Use recursive delete-a-leaf on

the parent.

When doing a recursive “delete-a-

leaf” on a non-leaf node, drag > | 4

12

along subtrees.

30 Nov 2009 CS 311 Fall 2009

Review
Other Balanced Search Trees [1/4]

In a 2-3-4 Tree, we also allow 4-nodes.

20

/‘\
4712 32
4 N N
2| |5]|9] [3

8| |23 28| |35

The insert and delete algorithms are not terribly different from
those of a 2-3 Tree.

= They are a little more complex.
= And they tend to be a little faster.

30 Nov 2009 CS 311 Fall 2009

Review
Other Balanced Search Trees [2/3]

A very efficient kind of balanced search tree is a Red-Black Tree.
= This is a Binary-Search Tree representation of a 2-3-4 tree.
= Each node in a Red-Black Tree is either red or black.
= Each node in the 2-3-4 Tree corresponds to a black node.
= The red nodes are the extra ones we need to add.

= Red-Black Trees may not be balanced (in the strict sense).
However, each path from the root to a leaf must pass through the
same number of black nodes.

20
20
/' ‘\ 12
51215 24 —_—
-t e 5 15 22| |25
3|7 9| |14 (19| |22| |25 31191 4l lio
Z
2-3-4 tree / Corresponding

Red-Black Tree

30 Nov 2009 CS 311 Fall 2009 11

Review
Other Balanced Search Trees [3/3]

All balanced search trees (2-3 Trees, 2-3-4 Trees,|Red-Black Trees)
AVL Trees, etc.) have:

Best overall performance

= O(log n) retrieve, insert, delete. for in-memory data,
when we mix up retrieves,
= O(n) traverse (sorted). inserts, and deletes.

Retrieve & Sorted Traverse

= For Red-Black Trees and AVL Trees, use the B.S.T. algorithms
(traverse = inorder traverse).

= For 2-3 Trees and 2-3-4 Trees, use the obvious generalization of
the B.S.T. algorithms.

Insert & Delete
= These are more complicated.
= For 2-3 Trees, we looked at the algorithms in some detail.

= The 2-3-4 Trees and Red-Black Trees, the algorithms use the same
ideas.

30 Nov 2009 CS 311 Fall 2009 12

Review
Hash Tables — Introduction

A Hash Table is a Table implementation that uses a hash
function for key-based look-up.

= A Hash Table is generally implemented as an array. The index used
is the output of the hash function.

key — fu?niiir:)n — location

Needed:
= Hash function.

= Collision resolution method.
= Collision: hash function gives same output for different keys.

30 Nov 2009 CS 311 Fall 2009 13

Review
Hash Tables — Good Hash Functions

A hash function must:

= Take a valid key and return an integer.
= Be deterministic.

= Its value depends only on its input (the key). Using the same input
multiple times results in the same output each time.

A good hash function:
= Can be computed quickly.

= Spreads out its results evenly over the possible output values.

= To help spread out the results, some implementations give the Hash
Table a prime number of locations.

= Turns patterns in its input into random-looking output.
Each key type has its own hash function.

= For client-defined key types, a hash function must be provided by
the client.

= Can put different key types, each with its own hash function, in the
same Hash Table.

= Hash Table sends the output of the provided hash function through
a secondary function ("%'?) to make the output a valid index.

30 Nov 2009 CS 311 Fall 2009 14

Review
Hash Tables — Collision Resolution [1/2]

Collision Resolution Methods — Type 1: Open Addressing

= Hash Table is an array. Each location holds one key-data pair,
“empty”, or “deleted”.

= Search in a sequence of locations (the probe sequence),
beginning at the location given by the hashed key.

= Linear probing: ¢, t+1, t+2, etc.
= Tends to form clusters.
= Quadratic probing: ¢, t+12, t+22, etc.

= Double hashing: Use another hash function to help determine the
probe sequence.

Cluster
A
] ' ~N
| |] HE |]
EMPTY . DELETED Non-empty

30 Nov 2009 CS 311 Fall 2009 15

Review
Hash Tables — Collision Resolution [2/2]

Collision Resolution Methods — Type 2: “"Buckets”
= Hash Table is an array of data structures, each of which can hold
multiple key-data pairs.
= Array locations are buckets.
= Separate chaining: Each bucket is a Linked List.
= This is very common.

v v v v v v
v v v v
v v

30 Nov 2009 CS 311 Fall 2009 16

Review
Hash Tables — Table-Remake

Sometimes it is necessary to remake the Hash Table.

= All implementations have performance degradation as the number
of data items rises.

In these cases, we need to do a reallocate-and-copy, as we did
with smart arrays.

This is one of the downsides of Hash Tables.

30 Nov 2009 CS 311 Fall 2009 17

Hash Tables | continued
Efficiency — Introduction

A perfect hash function (one without collisions) results in insert, delete,
and retrieve operations that are O(1).

= In practice, we cannot guarantee this, if we allow insert & delete
operations.

= But this might be a good idea, for a fixed data set (no insert/delete).
In the worst case, all items get the same hashed value, and so collisions
happen nearly all the time.
= Thus, retrieve is linear time (worst case), for most implementations.
= But what if our buckets are Red-Black Trees?

However, we generally use a Hash Table when we are interested in
average-case performance.

The average-case performance of a Hash Table can be analyzed based on
the load factor.

= The Joad factor, denoted by o, is:
(# of items present) / (# of locations in table)

= We generally want a to be small. In the following slides, we will assume « is
significantly less than 1 (less than 2/3, maybe?).

= We will also assume, for now, that no Table-remake is required.

30 Nov 2009 CS 311 Fall 2009 18

Hash Tables
Efficiency — Separate Chaining

For example, consider separate chaining.
= Worst Case

= Insert is constant time, assuming we do not search.
= We can avoid a search, if we allow duplicate keys.

= Retrieve and delete require a search: linear time.

= Similarly, if we do not allow duplicate keys, then insert requires a
search, and so is linear time.

= Average Case

= The average number of items in a bucket is a (the load factor).

= Thus, the average number of comparisons required for a search
resulting in NOT FOUND is a.

= The average number of comparisons required for a search resulting in
FOUND is approximately 1 + o/2.

= This applies to operations requiring a search: retrieve and delete
certainly, insert maybe. Insert without search is constant time.

30 Nov 2009 CS 311 Fall 2009 19

Hash Tables
Efficiency — Open Addressing

With open addressing, retrieve, insert, and delete all require a
search, even if duplicate keys are allowed.

Worst Case
= Linear time.

Average Case

= For linear probing:
= NOT FOUND: (1/2)[1+1/(1-a)]?.
= FOUND: (1/2)[1+1/(1-a)].

= For quadratic probing:
= NOT FOUND: 1/(1-0).
= FOUND: -In(1-a)/a.

= Again:
= We assume «a is significantly less than 1, and that the Table-remake

operation is not done.

= The efficiency of insert, delete, and retrieve is essentially the same in all
cases.

30 Nov 2009 CS 311 Fall 2009 20

Hash Tables
Efficiency — Traverse

Hash Table traverse can be slow, because of the empty locations.

= Assume:

= Either open addressing is used, or else buckets are implemented using
structures that can be traversed in linear time.

= We do not want a sorted traverse.

= Then traverse is O(n + b), where n is the number of items in the
Hash Table, and b is the number of locations (buckets?).

A speed-up: Use an auxiliary Doubly Linked List containing all
stored key-data pairs.

= Each key-data pair gets two pointers (previous node, next node).
= Table insert & delete modify the Linked List.
= Table traverse uses the Linked List. Result: traverse is O(n).

3 1 2 Hash Table data
Linked List head Gy |l TTTTTIA TUTITITLLBRd [T T o
N J

30 Nov 2009 CS 311 Fall 2009

Hash Tables
Efficiency — Issues

The Table-remake operation has a similar effect on Hash-Table
efficiency to that of reallocate-and-copy on a smart array.

= Constant time becomes amortized constant time.
All reasonable implementations of a Hash Table have average-

case performance of constant time for retrieve and delete, and
also for insert, if no Table-remake is required.

= For the insert operation, this becomes an average case of amortized
constant time, if Table-remake operations are done intelligently.

In common Hash Table implementations, worst-case performance
is linear time for retrieve and delete, and also for insert, if
duplicate keys are not allowed.

An important issue is whether a malicious user can force worst-
case performance.
= A well-chosen hash function makes this difficult.

= The design of such a function is beyond the scope of this class, but
information and implementations are not hard to find.

30 Nov 2009 CS 311 Fall 2009 22

Hash Tables
Efficiency — Comparison

Idea #1 Idea #2 Idea #3
Ve - ~ - N\ N

Priority Queue | Red-Black Tree | Hash Table: | Hash Table:

using Heap average case | worst case
Retrieve | Constant* Logarithmic Constant Linear
Insert (Amortized)** | Logarithmic Amortized Lineagr ¥k

logarithmic constant***
Delete Logarithmic* | Logarithmic Constant Linear

*Priority Queue retrieve & delete are not Table operations in their full generality.
Only the item with the highest priority can be retrieved/deleted.

**This is logarithmic if (1) the PQ does not manage its own memory, or (2) enough
memory is preallocated. Otherwise, occasional linear-time reallocate-and-copy
may be required. Time per-operation, averaged over many consecutive
operations, will be logarithmic. Thus, “amortized logarithmic”.

***Hash Table insert is constant time in a “double average” sense: when averaged
both over all possible inputs and over a large number of consecutive operations.

****This is amortized constant time if both of the following are true: (1) separate
chaining is used, and (2) duplicate keys are allowed.

30 Nov 2009 CS 311 Fall 2009 23

Hash Tables
Efficiency — Conclusion

We have another example of average-case vs. worst-case
efficiency trade-off.

= One that we saw was Quicksort vs. O(n log n) sorts. But we do not
need to worry about that any more.

= However, Hash Tables vs. balanced search trees is still an issue.

Hash Tables have very good performance for “typical” situations.
= Its occasional drawbacks can be serious.

When using a Hash Table, do so intelligently.

30 Nov 2009 CS 311 Fall 2009 24

Prefix Trees
Background

Consider a list of words.
= In practice, our list might be much longer.

= Alphabetically order the words. Each is likely to have
many letters in common with its predecessor.

= That is, consecutive words tend to have a prefix in
common.

One easy way to take advantage of this is to store
each word as a number followed by letters.

= This method is very suitable for use in a text file that
is loaded all at once.

= But it does not support fast look-up by key (word).

A method more suited for in-memory use is a Prefix
Tree.

= Also (and, sadly, more commonly) called a “"Trie”.
= For “reTRIEval”.
= You're supposed to say "TREE”. ®
= I've heard "TRY". ®
= Tck.

30 Nov 2009 CS 311 Fall 2009

dig
dog
dot
dote
doting

€ggs

v

Odig
1og
2t

3e
3ing
Oeggs

!

Not a

Prefix Tree!

25

Prefix Trees
Definition [1/2]

A Prefix Tree (or Trie) is a Table implementation in which the
keys are strings.

= We use “string” in a general sense,
as in our discussion of Radix Sort.
= A nonnegative integer is a string of digits. 47 N\ e
= The quintessential key type is words,
as in the previous slide.

= A Prefix Tree is space-efficient when
keys tend to share prefixes.

A Prefix Tree is a kind of tree. ﬁ
= Each node can have one child for each d
possible character. v

= Each node also contains a Boolean value,
indicating whether it represents a stored key. °
= Duplicate keys are not allowed.
= Lastly, each node can hold the data associated
with a key.

Prefix
Tree

30 Nov 2009 CS 311 Fall 2009 26

Prefix Trees
Definition [2/2]

In a Prefix Tree for storing words composed only of lower-case

English letters, each node has: |
= 26 child pointers (one for each letter). ?E:‘;'X
= A Boolean value

47 e

= A spot for the associated data.

The keys in the Prefix Tree to the right are
those from our word list:

dig, dog, dot, dote, doting, eggs.
= Rather than draw 26 pointers for each o
node, I have labeled each pointer with e/ A ﬁ
the appropriate letter. hd L
= A node with a black circle is one that represents -
a word in the list. g}
®

30 Nov 2009 CS 311 Fall 2009 27

Prefix Trees
Implementation

How would we implement a Prefix Tree node?
= Example:

struct PTNode {
(PTNode *) ptrs [26]; // a .. z ptrs; NULL if none

bool IsWrd ; /] true if a word ends here
Dat aType dat a_;
i An RAII class would
} ' be good to have here.

See Boost’s shared _ptr.

= Another possibility:

struct PTNode {
std: : mapgchar, PTNode *> ptrs_;

bool isWrd ; An STL Table implementation
Dat aType data_; (think “Red-Black Tree”)

i

30 Nov 2009 CS 311 Fall 2009

Prefix Trees
Any Good?

Efficiency
= For a Prefix Tree, Table retrieve, insert, and delete all take a
number of steps proportional to the length of the key.

= If word length is considered fixed, then all are constant time.
= However, word length is logarithmic in the number of possible

words.
= A hidden logarithm, just like Radix Sort.

A Prefix Tree is a good basis for a Table implementation, when
keys are short-ish sequences from a not-too-huge alphabet.

= Words in a dictionary, ZIP codes, etc.
= Just like Radix Sort.
A Prefix Tree is easy to implement.
The idea behind Prefix Trees is also used in other data structures.

30 Nov 2009 CS 311 Fall 2009 29

