
Hash Tables
Prefix Trees

CS 311 Data Structures and Algorithms

Lecture Slides

Monday, November 30, 2009

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

CHAPPELLG@member.ams.org

© 2005–2009 Glenn G. Chappell

continued

30 Nov 2009 CS 311 Fall 2009 2

Review
Where Are We? — The Big Problem

Our problem for much of the rest of the semester:

� Store: a collection of data items, all of the same type.

� Operations:

� Access items [one item: retrieve/find, all items: traverse].

� Add new item [insert].

� Eliminate existing item [delete].

� All this needs to be efficient in both time and space.

A solution to this problem is a container.

Generic containers: those in which client code can specify the
type of data stored.

30 Nov 2009 CS 311 Fall 2009 3

Unit Overview
Tables & Priority Queues

Major Topics

� Introduction to Tables

� Priority Queues

� Binary Heap algorithms

� Heaps & Priority Queues in the C++ STL

� 2-3 Trees

� Other balanced search trees

� Hash Tables

� Prefix Trees

� Tables in various languages

�

�

Idea #1: Restricted Table

Idea #2: Keep a Tree Balanced

Idea #3: “Magic Functions”

Lots of lousy implementations

�

�

�

�

(part)

30 Nov 2009 CS 311 Fall 2009 4

Review
Introduction to Tables

Idea #1: Restricted Table
� Perhaps we can do better if we do not implement a Table in its full generality.

Idea #2: Keep a Tree Balanced
� Balanced Binary Search Trees look good, but how to keep them balanced efficiently?

Idea #3: “Magic Functions”
� Use an unsorted array of key-data pairs. Allow array items to be marked as “empty”.

� Have a “magic function” that tells the index of an item.

� Retrieve/insert/delete in constant time? (Actually no, but this is still a worthwhile idea.)

We will look at what results from these ideas:
� From idea #1: Priority Queues

� From idea #2: Balanced search trees (2-3 Trees, Red-Black Trees, B-Trees, etc.)

� From idea #3: Hash Tables

Linear

Linear

Linear

Binary
Search Tree

Linear

Constant

Linear

Unsorted
Linked List

Linear

Linear

Linear

Sorted
Linked List

Logarithmic

Logarithmic

Logarithmic

Balanced (how?)
Binary
Search Tree

Constant???LinearInsert

LinearLinearDelete

LinearLogarithmicRetrieve

Unsorted
Array

Sorted
Array

30 Nov 2009 CS 311 Fall 2009 5

Overview of Advanced Table Implementations

We will cover the following advanced Table implementations.

� Balanced Search Trees

� Binary Search Trees are hard to keep balanced, so to make things easier
we allow more than 2 children:

� 2-3 Tree

� Up to 3 children

� 2-3-4 Tree

� Up to 4 children

� Red-Black Tree

� Binary-tree representation of a 2-3-4 tree

� Or back up and try a balanced Binary Tree again:

� AVL Tree

� Alternatively, forget about trees entirely:

� Hash Tables

� Finally, “the Radix Sort of Table implementations”:

� Prefix Tree

�

�

�

(part)

�

30 Nov 2009 CS 311 Fall 2009 6

Review
2-3 Trees [1/4]

A Binary-Search-Tree style node is
a 2-node.

� This is a node with 2 subtrees
and 1 data item.

� The item’s value lies between the
values in the two subtrees.

In a “2-3 Tree” we also allow a
node to be a 3-node.

� This is a node with 3 subtrees
and 2 data items.

� Each of the 2 data items has a
value that lies between
the values in the corresponding
pair of consecutive subtrees.

Later, we will look at “2-3-4 trees”,
which can also have 4-nodes.

2-node

10

�≤10 10≤�

3 9

3-node

3≤�≤9 9≤��≤3

2 5

4-node

5≤�≤7 7≤��≤2

7

2≤�≤5

2 subtrees
1 item
ordering

3 subtrees
2 items
ordering

4 subtrees
3 items
ordering

Like a Binary-
Search-Tree
node

30 Nov 2009 CS 311 Fall 2009 7

Review
2-3 Trees [2/4]

A 2-3 Search Tree (generally we just say 2-3 Tree) is a tree with
the following properties.

� All nodes contain either
1 or 2 data items.

� If 2 data items, then the
first is ≤ the second.

� All leaves are at the
same level.

� All non-leaves are either 2-nodes or 3-nodes.

� They must have the associated order properties.

To retrieve in a 2-3 Tree:

� Begin at the root, and go down, using the order properties, until the
item is found, or clearly not in the tree.

To traverse a 2-3 Tree:

� Use the appropriate generalization of inorder traversal.

� Items are visited in sorted order.

9 18

20

32

352 4

7 12

23 28

30 Nov 2009 CS 311 Fall 2009 8

Review
2-3 Trees [3/4]

To insert in a 2-3 Tree:

� Find the leaf that the new item should go in.

� If it fits, then simply put it in.

� Otherwise, there is an overfull node. Split it, and move the middle
item up, either recursively inserting it in the parent, or else creating
a new root.

9182 4

7 12

18

7 12

9 2 4 5 9 18

4 7 12

2 5 9 182 5

124

7

182 4

7 12

918

7 12

942

5

30 Nov 2009 CS 311 Fall 2009 9

Review
2-3 Trees [4/4]

To delete in a 2-3 Tree:
� Find the item. If it is not in a

leaf, swap with its successor.

� Do the recursive delete-a-leaf
procedure.

To delete-a-leaf:
� Easy Case: If the item is in a

node with another item, simply
remove it.

� Semi-Easy Case: Otherwise, if
the node has a consecutive
sibling with two items, do a
rotation with the parent.

� Hard Case: Otherwise, bring
the parent down, combining it
with a consecutive sibling.
� Use recursive delete-a-leaf on

the parent.

When doing a recursive “delete-a-
leaf” on a non-leaf node, drag
along subtrees.

182 4

7 12

9 182 4

9 12

7

182 4

7 12

9 18

7 12

92

182 4

7 12

9 18

4 12

72

182 4

7 12

9 2 4

7

9 12

30 Nov 2009 CS 311 Fall 2009 10

Review
Other Balanced Search Trees [1/4]

In a 2-3-4 Tree, we also allow 4-nodes.

The insert and delete algorithms are not terribly different from
those of a 2-3 Tree.

� They are a little more complex.

� And they tend to be a little faster.

9 18

20

32

3523 28

4 7 12

2 5

30 Nov 2009 CS 311 Fall 2009 11

Review
Other Balanced Search Trees [2/3]

A very efficient kind of balanced search tree is a Red-Black Tree.

� This is a Binary-Search Tree representation of a 2-3-4 tree.

� Each node in a Red-Black Tree is either red or black.

� Each node in the 2-3-4 Tree corresponds to a black node.

� The red nodes are the extra ones we need to add.

� Red-Black Trees may not be balanced (in the strict sense).
However, each path from the root to a leaf must pass through the
same number of black nodes.

2-3-4 tree Corresponding
Red-Black Tree

20

5 15

3 9 14 19

7

22 25

2412

19

5 12 15

3 147 9 2522

24

20

30 Nov 2009 CS 311 Fall 2009 12

Review
Other Balanced Search Trees [3/3]

All balanced search trees (2-3 Trees, 2-3-4 Trees, Red-Black Trees,
AVL Trees, etc.) have:

� O(log n) retrieve, insert, delete.

� O(n) traverse (sorted).

Retrieve & Sorted Traverse

� For Red-Black Trees and AVL Trees, use the B.S.T. algorithms
(traverse = inorder traverse).

� For 2-3 Trees and 2-3-4 Trees, use the obvious generalization of
the B.S.T. algorithms.

Insert & Delete

� These are more complicated.

� For 2-3 Trees, we looked at the algorithms in some detail.

� The 2-3-4 Trees and Red-Black Trees, the algorithms use the same
ideas.

Best overall performance
for in-memory data,
when we mix up retrieves,
inserts, and deletes.

30 Nov 2009 CS 311 Fall 2009 13

Review
Hash Tables — Introduction

A Hash Table is a Table implementation that uses a hash
function for key-based look-up.

� A Hash Table is generally implemented as an array. The index used
is the output of the hash function.

Needed:

� Hash function.

� Collision resolution method.

� Collision: hash function gives same output for different keys.

(key, data) EMPTY (key, data) (key, data) EMPTY (key, data)(key, data) (key, data)

hash
function

key location

30 Nov 2009 CS 311 Fall 2009 14

Review
Hash Tables — Good Hash Functions

A hash function must:
� Take a valid key and return an integer.

� Be deterministic.
� Its value depends only on its input (the key). Using the same input

multiple times results in the same output each time.

A good hash function:
� Can be computed quickly.

� Spreads out its results evenly over the possible output values.
� To help spread out the results, some implementations give the Hash

Table a prime number of locations.

� Turns patterns in its input into random-looking output.

Each key type has its own hash function.
� For client-defined key types, a hash function must be provided by

the client.

� Can put different key types, each with its own hash function, in the
same Hash Table.

� Hash Table sends the output of the provided hash function through
a secondary function (“%”?) to make the output a valid index.

30 Nov 2009 CS 311 Fall 2009 15

Review
Hash Tables — Collision Resolution [1/2]

Collision Resolution Methods — Type 1: Open Addressing

� Hash Table is an array. Each location holds one key-data pair,
“empty”, or “deleted”.

� Search in a sequence of locations (the probe sequence),
beginning at the location given by the hashed key.

� Linear probing: t, t+1, t+2, etc.

� Tends to form clusters.

� Quadratic probing: t, t+12, t+22, etc.

� Double hashing: Use another hash function to help determine the
probe sequence.

EMPTY Non-emptyDELETED

Cluster

30 Nov 2009 CS 311 Fall 2009 16

Review
Hash Tables — Collision Resolution [2/2]

Collision Resolution Methods — Type 2: “Buckets”

� Hash Table is an array of data structures, each of which can hold
multiple key-data pairs.

� Array locations are buckets.

� Separate chaining: Each bucket is a Linked List.

� This is very common.

30 Nov 2009 CS 311 Fall 2009 17

Review
Hash Tables — Table-Remake

Sometimes it is necessary to remake the Hash Table.

� All implementations have performance degradation as the number
of data items rises.

In these cases, we need to do a reallocate-and-copy, as we did
with smart arrays.

This is one of the downsides of Hash Tables.

30 Nov 2009 CS 311 Fall 2009 18

Hash Tables
Efficiency — Introduction

A perfect hash function (one without collisions) results in insert, delete,
and retrieve operations that are O(1).

� In practice, we cannot guarantee this, if we allow insert & delete
operations.

� But this might be a good idea, for a fixed data set (no insert/delete).

In the worst case, all items get the same hashed value, and so collisions
happen nearly all the time.

� Thus, retrieve is linear time (worst case), for most implementations.

� But what if our buckets are Red-Black Trees?

However, we generally use a Hash Table when we are interested in
average-case performance.

The average-case performance of a Hash Table can be analyzed based on
the load factor.

� The load factor, denoted by α, is:
(# of items present) / (# of locations in table)

� We generally want α to be small. In the following slides, we will assume α is
significantly less than 1 (less than 2/3, maybe?).

� We will also assume, for now, that no Table-remake is required.

continued

30 Nov 2009 CS 311 Fall 2009 19

Hash Tables
Efficiency — Separate Chaining

For example, consider separate chaining.

� Worst Case

� Insert is constant time, assuming we do not search.

� We can avoid a search, if we allow duplicate keys.

� Retrieve and delete require a search: linear time.

� Similarly, if we do not allow duplicate keys, then insert requires a
search, and so is linear time.

� Average Case

� The average number of items in a bucket is α (the load factor).

� Thus, the average number of comparisons required for a search
resulting in NOT FOUND is α.

� The average number of comparisons required for a search resulting in
FOUND is approximately 1 + α/2.

� This applies to operations requiring a search: retrieve and delete
certainly, insert maybe. Insert without search is constant time.

30 Nov 2009 CS 311 Fall 2009 20

Hash Tables
Efficiency — Open Addressing

With open addressing, retrieve, insert, and delete all require a
search, even if duplicate keys are allowed.

Worst Case

� Linear time.

Average Case

� For linear probing:

� NOT FOUND: (1/2)[1+1/(1–α)]2.

� FOUND: (1/2)[1+1/(1–α)].

� For quadratic probing:

� NOT FOUND: 1/(1–α).

� FOUND: -ln(1–α)/α.

� Again:

� We assume α is significantly less than 1, and that the Table-remake
operation is not done.

� The efficiency of insert, delete, and retrieve is essentially the same in all
cases.

30 Nov 2009 CS 311 Fall 2009 21

Hash Tables
Efficiency — Traverse

Hash Table traverse can be slow, because of the empty locations.

� Assume:

� Either open addressing is used, or else buckets are implemented using
structures that can be traversed in linear time.

� We do not want a sorted traverse.

� Then traverse is O(n + b), where n is the number of items in the
Hash Table, and b is the number of locations (buckets?).

A speed-up: Use an auxiliary Doubly Linked List containing all
stored key-data pairs.

� Each key-data pair gets two pointers (previous node, next node).

� Table insert & delete modify the Linked List.

� Table traverse uses the Linked List. Result: traverse is O(n).

3 1 2
Linked List head

Hash Table data

Pointers

30 Nov 2009 CS 311 Fall 2009 22

Hash Tables
Efficiency — Issues

The Table-remake operation has a similar effect on Hash-Table
efficiency to that of reallocate-and-copy on a smart array.

� Constant time becomes amortized constant time.

All reasonable implementations of a Hash Table have average-
case performance of constant time for retrieve and delete, and
also for insert, if no Table-remake is required.

� For the insert operation, this becomes an average case of amortized
constant time, if Table-remake operations are done intelligently.

In common Hash Table implementations, worst-case performance
is linear time for retrieve and delete, and also for insert, if
duplicate keys are not allowed.

An important issue is whether a malicious user can force worst-
case performance.

� A well-chosen hash function makes this difficult.

� The design of such a function is beyond the scope of this class, but
information and implementations are not hard to find.

30 Nov 2009 CS 311 Fall 2009 23

Hash Tables
Efficiency — Comparison

*Priority Queue retrieve & delete are not Table operations in their full generality.
Only the item with the highest priority can be retrieved/deleted.

**This is logarithmic if (1) the PQ does not manage its own memory, or (2) enough
memory is preallocated. Otherwise, occasional linear-time reallocate-and-copy
may be required. Time per-operation, averaged over many consecutive
operations, will be logarithmic. Thus, “amortized logarithmic”.

***Hash Table insert is constant time in a “double average” sense: when averaged
both over all possible inputs and over a large number of consecutive operations.

****This is amortized constant time if both of the following are true: (1) separate
chaining is used, and (2) duplicate keys are allowed.

Linear

Linear****

Linear

Hash Table:
worst case

Constant

Amortized
constant***

Constant

Hash Table:
average case

Logarithmic(Amortized)**
logarithmic

Insert

LogarithmicLogarithmic*Delete

LogarithmicConstant*Retrieve

Red-Black TreePriority Queue
using Heap

Idea #1 Idea #2 Idea #3

30 Nov 2009 CS 311 Fall 2009 24

Hash Tables
Efficiency — Conclusion

We have another example of average-case vs. worst-case
efficiency trade-off.

� One that we saw was Quicksort vs. O(n log n) sorts. But we do not
need to worry about that any more.

� However, Hash Tables vs. balanced search trees is still an issue.

Hash Tables have very good performance for “typical” situations.

� Its occasional drawbacks can be serious.

When using a Hash Table, do so intelligently.

30 Nov 2009 CS 311 Fall 2009 25

Prefix Trees
Background

Consider a list of words.
� In practice, our list might be much longer.

� Alphabetically order the words. Each is likely to have
many letters in common with its predecessor.

� That is, consecutive words tend to have a prefix in
common.

One easy way to take advantage of this is to store
each word as a number followed by letters.
� This method is very suitable for use in a text file that

is loaded all at once.

� But it does not support fast look-up by key (word).

A method more suited for in-memory use is a Prefix
Tree.
� Also (and, sadly, more commonly) called a “Trie”.

� For “reTRIEval”.

� You’re supposed to say “TREE”. �

� I’ve heard “TRY”. �

� Ick.

dig
dog
dot
dote
doting
eggs

0dig
1og
2t
3e
3ing
0eggs

Not a
Prefix Tree!

30 Nov 2009 CS 311 Fall 2009 26

Prefix Trees
Definition [1/2]

A Prefix Tree (or Trie) is a Table implementation in which the
keys are strings.

� We use “string” in a general sense,
as in our discussion of Radix Sort.

� A nonnegative integer is a string of digits.

� The quintessential key type is words,
as in the previous slide.

� A Prefix Tree is space-efficient when
keys tend to share prefixes.

A Prefix Tree is a kind of tree.

� Each node can have one child for each
possible character.

� Each node also contains a Boolean value,
indicating whether it represents a stored key.

� Duplicate keys are not allowed.

� Lastly, each node can hold the data associated
with a key.

d e

i

g

o

tg

e i

g

n

g

g

s

Prefix
Tree

30 Nov 2009 CS 311 Fall 2009 27

Prefix Trees
Definition [2/2]

In a Prefix Tree for storing words composed only of lower-case
English letters, each node has:

� 26 child pointers (one for each letter).

� A Boolean value

� A spot for the associated data.

The keys in the Prefix Tree to the right are
those from our word list:
dig, dog, dot, dote, doting, eggs.

� Rather than draw 26 pointers for each
node, I have labeled each pointer with
the appropriate letter.

� A node with a black circle is one that represents
a word in the list.

Prefix
Tree

d e

i

g

o

tg

e i

g

n

g

g

s

30 Nov 2009 CS 311 Fall 2009 28

Prefix Trees
Implementation

How would we implement a Prefix Tree node?
� Example:

struct PTNode {

(PTNode *) ptrs_[26]; // a .. z ptrs; NULL if none

bool isWord_; // true if a word ends here
DataType data_;

};

� Another possibility:

struct PTNode {

std::map<char, PTNode *> ptrs_;

bool isWord_;

DataType data_;

};

An STL Table implementation
(think “Red-Black Tree”)

An RAII class would
be good to have here.
See Boost’s shared_ptr.

30 Nov 2009 CS 311 Fall 2009 29

Prefix Trees
Any Good?

Efficiency

� For a Prefix Tree, Table retrieve, insert, and delete all take a
number of steps proportional to the length of the key.

� If word length is considered fixed, then all are constant time.

� However, word length is logarithmic in the number of possible

words.

� A hidden logarithm, just like Radix Sort.

A Prefix Tree is a good basis for a Table implementation, when
keys are short-ish sequences from a not-too-huge alphabet.

� Words in a dictionary, ZIP codes, etc.

� Just like Radix Sort.

A Prefix Tree is easy to implement.

The idea behind Prefix Trees is also used in other data structures.

