
Bounding Recursive Procedural Models using Convex Optimization

Orion Sky Lawlor and John C. Hart
Department of Computer Science

University of Illinois at Urbana-Champaign
olawlor@acm.org, jch@cs.uiuc.edu

Abstract

We present an algorithm to construct a tight bound-
ing polyhedron for a recursive procedural model. We
first use an iterated function system (IFS) to represent
the extent of the procedural model. Then we present a
novel algorithm that expresses the IFS-bounding prob-
lem as a set of linear constraints on a linear objective
function, which can then be solved via standard tech-
niques for linear convex optimization. As such, our al-
gorithm is guaranteed to find the recursively optimal
bounding polyhedron, if it exists. Finally, we demon-
strate examples of this algorithm on two and three di-
mensional recursive procedural models.

1 Introduction

Recursive procedural models are an essential tool in
computer graphics [8]. They allow a designer to gener-
ate scenes of any desired detail by specifying the rules or
parameters to procedurally synthesize the scene instead
of meticulously modeling every individual feature.

Procedural models are most effective when they can
be evaluated on demand, such that details are synthe-
sized only where they visibly impact the scene. But
this lazy evaluation requires a termination test to de-
termine when to stop synthesizing irrelevant details. A
geometric termination test requires a bounding volume;
the challenge is to predict this bounding volume without
synthesizing all the included geometry.

Representations of recursive procedural models in-
clude the L-system [18, 17] (a.k.a. the graphtal [20]) and
the iterated function system (IFS) [1, 11]. The L-system
is more widely used because it is easier to describe and
generalizes into a more powerful shape representation.
The IFS is more restrictive, which makes it easier to an-
alyze. In many cases we can approximate an L-system
with an IFS, then find a bounding volume for the IFS
attractor.

Figure 1. A truncated cube bounding volume, computed automatically
by our algorithm to bound the leaves of a fractal tree, by bounding the
tree’s IFS.

Deterministic context-free L-systems (D0L-systems)
can be represented by (recurrent) iterated function sys-
tems [10, 8] (and vice versa [16].) The recursive self-
references found in L-system productions correspond to
the iterated maps of an iterated function system.

L-systems often terminate their self-reference
through the use of parameterized productions. The
resulting object, with its truncated self-similarity, is
actually a subset of the corresponding IFS attractor with
complete self-similarity. Hence a bounding volume for
the IFS attractor suffices as a bounding volume for the
smaller L-system shape.

Moreover, the IFS need not contain the L-system
model as a strict subset. For example, if an L-system
models a tree, then an IFS representation of the tips of
the branches plus a point at the base might have an iden-
tical bounding volume. A convex bounding volume for
the IFS would thus serve to bound the entire tree, even
though the IFS attractor may not contain all the details
of the tree’s branches.

Given an IFS and a desired number of facesn (and
their orientations), our algorithm finds the smallest ori-
entedn-faced polyhedron that contains its images under
the IFS transformations. Figure 1 illustrates an example
of our algorithm bounding the recursive geometry of a
fractal tree.

Section 2 reviews previous methods for predicting
bounding volumes for procedural models, and Section 3
reviews the iterated function system. Section 4 describes
our algorithm in detail, and Section 5 discusses bound-
ing refinement, limitations, and extensions to the RIFS
case. Section 6 demonstrates the algorithm and pro-
vides results, which indicates that the method is useful
for bounding real IFS. Finally, Section 7 concludes and
offers ideas for further investigation.

2 Previous Work

While procedural models are much more compact
than stored-data models, their construction can be
slower due to the time required to execute the geometry-
synthesizing procedures. Bounding volumes are often
used for procedural models as a way to reduce this pro-
cessing time. For example, we can use a bounding vol-
ume to view-cull offscreen portions of procedural mod-
els, or use the size of the bounding volume to terminate
the procedural recursion once it reaches pixel size.

Some of the earliest recursive procedural models
were midpoint subdivision methods for synthesizing ter-
rain [9]. Analysis of the statistics of the self-affine sub-
division led to the construction of the “cheesecake” ex-
tent (an extruded triangle) [13] and ellipsoids [4] that
contained all possible terrains produced by midpoint
subdivision of a patch.

Much of the prior work for predicting the extent
of IFS attractors has used bounding spheres. Given a
bounding sphere, the transformations of the IFS can gen-
erate a bounding volume hierarchy that can be used to
efficiently raytrace the attractor [11]. This ray-tracing
method depends on the existence of an initial bounding
volume, and an ad-hoc algorithm was devised [11] for
constructing a loose bounding volume. Given a center
(e.g. the mean of the fixed points of each of the the
IFS maps), the algorithm determined a sphere radius that
would, in the limit, contain its images under the maps of
the IFS. More sophisticated methods search for the opti-
mal bounding sphere center that minimizes the radius of
the resulting bounding sphere. The mathematical litera-
ture shows that this optimal center can be found via the
technique of Lagrange multipliers [7]. Graphics papers,
apparently developed independently, note that the prob-
lem is well suited to the use of a generic nonlinear opti-
mization package [19]. Recent work [15] has improved

this optimization process using the invariant measure of
the IFS, which allows the anisotropy of the IFS maps
to be taken into account. These results appear to be the
state of the art in spherical bounds on IFS.

Rather than a bounding sphere, we seek a convex
bounding polyhedron. The mathematical literature does
contain an iterative method [6] which, if it converges,
will find a polyhedral bound. Like our technique, a
computer implementation of this iterative method re-
quires the directions, which form the face normals of
the bounding volume, to be discretized and fixed be-
forehand. Although this iterative technique converges
quickly for many IFS, there is in general no known limit
on the number of iterations required for convergence.
By contrast, our algorithm reaches its solution directly,
without iteration, since it is based on convex optimiza-
tion, which has a known maximal run time.

A recent work by Chu and Chen [5] demonstrates
a method to construct a tight, axis-aligned bounding
box for 2D IFS. Our work, although developed indepen-
dently, can be seen as a way to generalize this method
to more complex bounding volumes and higher dimen-
sions.

3 Iterated Function Systems

An Iterated Function System (IFS) consists of a finite
set of functionswm, which move points around in some
space—typically, the functionswm mapRn to Rn. For
example, the classic Sierpinski gasket’s IFS, shown in
Figure 2, consists of three maps that contract 2D space
by a factor of two towards the points(0,0), (1,0), and
(0.5,1).

The Hutchinson operatorW maps a set of points to
another set of points, and is defined as the union of each
of the mapswm. That is, given a subset of spaceB,

W(B) =
⋃

m∈M

wm(B)

Under certain conditions on thewm,1 it can be shown
that repeated applications ofW always converge to
a unique attractorA. That is, there exists a setA
such that, starting with any bounded nonempty setB,
W(W(...(W(B))) = W∞(B) = A. Furthermore,A is in-
variant underW—that is,W(A) = A. Convergent IFS,
with a well-defined attractor, are the only IFS that will
concern us.

We can now restate a recursive bounding theorem
[12, 11], which states that if a shape bounds its image
under the operatorW, then the shape bounds the attrac-
tor, as demonstrated in Figure 2.

1A sufficient condition is that eachwm be Lipschitz contractive.

Figure 2. If a bounding volume contains its images under the maps of
an IFS, then it contains the attractor of the IFS.

Theorem 1. Let B be a non-empty compact subset of
Rn and let W be the Hutchinson operator of a convergent
IFS on Rn. If W(B)⊂ B then W∞(B)⊂ B.

Proof: A simple proof proceeds by induction on appli-
cations ofW.

The base case is trivial sinceW(B)⊂ B.
For the inductive step, assume for somek,Wk(B)⊂B

and letC = Wk(B). The subset propertyC⊂ B, is pre-
served in the image of each of the IFS mapswm(C) ⊂
wm(B), and also in their unions

W(C) =
⋃

m∈M

wm(C)⊂
⋃

m∈M

wm(B) = W(B)⊂ B

ThusW(C) = W(Wk(B)) = Wk+1(B)⊂ B.
By induction, we haveW∞(B)⊂ B. �

4 Approach

Our basic approach will be to bound the IFS attractor
using a bounding hull built from the intersection of a set
of halfspaces. Using the recursive bounding theorem,
we will guarantee that the attractor lies within the hull by
guaranteeing “containment”—that is, by ensuring that
under each mapwm, the map of the hull lies within the
original hull.

Figure 3. We ensure containment by checking each corner of the hull
under each map.

In general, the map of a polyhedral hull is no longer
polyhedral; so checking containment can be quite diffi-
cult. Luckily, we are normally interested in affine maps

in ordinary Euclidean space, so the map of a convex
polyhedral hull is still a convex polyhedron. As such, we
can guarantee containment by requiring that each corner
of the polyhedron (that is, each intersection of the poly-
hedron’s sides), under each map, satisfies all the half-
spaces of the hull, as shown in Figure 3.

4.1 Method

Our bounding hull is a convex polyhedron, and hence
consists of a setSof halfspaces. Our halfspaces consist
of an outward-facing normal~ns, represented as a row
vector, and a scalar displacementds. Then we can de-
termine if a point~x, represented as a column vector, lies
inside the halfspace by examining the dot product

~ns~x≤ ds

In 2D, two halfspacesi and j intersect at a point~xi j if
the point simultaneously satisfies the equations of both
halfplanes, so [

~ni

~n j

]
~xi j =

[
di

d j

]
To guarantee containment, and hence apply the recur-

sive bounding theorem, we have to make sure each map
of each intersection satisfies each of the halfspaces. That
is, given a set of intersectionsI , mapsM, and halfspaces
S, we require

∀(i, j)∈I ,m∈M,s∈S ~nswm(~xi j)≤ ds (1)

4.2 Linearity of Constraints

We now need to show how the constraints in equa-
tion 1 can be made suitable for use in a linear optimizer.
We first note that if we fix the normals and define the
matrix

Ni j =
[

~ni

~ni

]
then~xi j is a linear function of the unknown halfspace
displacementsdi andd j

~xi j = N−1
i j

[
di

d j

]
In 3D, we can similarly define a matrixN−1

i jk to compute
the intersection of three halfplanes given their displace-
mentsdi jk .

Since we assumed the mapswm were affine, we can
represent each mapwm as a matrixWm and a shift vector
~sm, as in

wm(~x) = Wm~x+~sm

We can now expand out equation 1 and verify that our
constraints are now linear in the displacements

∀(i, j)∈I ,m∈M,s∈S ~ns(WmN−1
i j

[
di

d j

]
+~sm)≤ ds (2)

This final, linear form of our constraints is suitable for
direct use in a constrained linear optimization package;
where the displacementsdi are our unknowns and ev-
erything else is fixed. Code implementing this set of
constraints is listed in Appendix A.

A linear optimization system will also require an
objective function. We normally want the “smallest”
bounding hull, but exactly what we mean by “smallest”
determines our choice of an objective function. Area is
a natural choice, but unfortunately the area of the hull is
a nonlinear function of the displacements (for example,
the area of aw× h rectangle iswh), so we cannot di-
rectly minimize area. Another natural choice is to min-
imize the largest displacement (for example, we might
minimize max(w,h)), which is easy to achieve by the
standard technique of adding an additional variable to
represent the maximum displacement. Our choice for
an objective function is to minimize the sum of the dis-
placements (for a rectangle,w+h), which is quite sim-
ple and should give results similar to minimizing either
area or maximum displacement.

Since many linear optimizers require non-negative
values, we can ensure the displacements remain non-
negative by expressing the mapswm in a coordinate sys-
tem where the displacement origin lies within the hull.
For example, we can place the origin at one of the maps’
fixed points, since each of the maps’ fixed points must lie
within the attractor, and the attractor always lies within
the hull.

Finally, linear optimization systems can provide a
feasibility and optimality guarantee, which means this
procedure is guaranteed to find the smallest recursively
instantiable bounding hull if any exist. This guarantee
is actually not as useful as it may appear, because as
shown in the next section, we can often find a substan-
tially smaller bounding hull than the recursively optimal
one; and because of corners, a recursively instantiable
bounding hull may not even exist.

5 Discussion

This section discusses our bounding hull approach,
specifically the process of refining a recursive bounding
hull, the inherent limitations of polyhedra bounds un-
der rotation, the fixed orientation and topology of our
polyhedra faces, and the extension of the algorithm for
recurrent iterated function systems.

5.1 Refinement

Chu and Chen [5] point out that even a recursively-
optimal bound, like the one found by our linear opti-
mizer, can still be substantially improved. The reason is
that the IFS attractor is defined as the limit, to infinity,
of applications of the IFS maps; but a recursively built
bound is defined to be big enough to contain its direct
images under each IFS map.

This means we can more closely bound the IFS
attractor by bounding our very deeply-nested images,
which are small, rather than the larger images that are
only one level down. In mathematical notation, we
should require of our mapsB the less stringent prop-
erty thatWk(B)⊂B for some largek, rather than the un-
necessarily limiting recursive bound propertyW(B)⊂B.
Wk(B)⊂B, like the recursive bound property, is actually
still a linear constraint on the bound, so at least in theory
we could simply use this new set of constraints in our
linear optimizer. But because the number of separate
bound images inWk grows exponentially withk (for an
IFS with m maps,Wk maps one point tomk points), for
any reasonablek this refined set of constraints would be
too slow to implement directly in the linear optimizer.

(b) (c)(a)

Figure 4. Illustration of the refinement process, while searching for the
best left-side bound on this 3-map 2D IFS. (a) is the original bound,
which in (b) has been replaced by its maps. Replacing the leftmost
bound with its maps results in the new set (c).

Instead, we first use the simpler recursive constraints
to achieve a coarse initial bound, then use the iterative
refinement approach of Chu and Chen [5] to refine this
initial bound, by lazily evaluating the outermost edges
of Wk(B). For each halfplane of the refined bound, we
search for the outermost image of the original hull, by
intelligently traversing the structure of the IFS from the
large, initial maps down to the very small deeply nested
images–the process is illustrated in Figure 4. Like Hart’s
original IFS raytracing method [11], the core operation
in this refinement process is to find the outermost inter-
secting bound image, and then replace the bound with
its images under the IFS maps.

It may appear that this recursive map-opening pro-
cess is best implemented recursively, but for IFS where
the sub-bounds may overlap a purely recursive imple-
mentation may waste a good deal of time computing

double planeSearch(IFS, initBound,
searchPlane, maxDepth)

{
heap<BoundImage> H(searchPlane);
H.put(initBound);
while (O=H.get())
{ /*O is the outermost bound*/
if (O.depth == maxDepth) break;
for (each map m of the IFS)

H.put(O under map m);
}
return O.extent(searchPlane);

}

Figure 5. Pseudocode for the bound refinement process, using a heap-
based lazy evaluation scheme. This search finds the outermost point
(relative to an output bound search plane) of an initial bound under
repeated maps from the IFS.

very tight bounds that are later discovered to be useless.
Instead, a more efficient data structure to organize this
outermost-intersecting-bound search is a heap, ordered
by distance from the search halfplane, as shown in the
psuedocode in Figure 5.

The refined bounding volume is extracted, one half-
space at a time, by separate searches for these outermost
deeply-nested bounds. The initial bounding volume is
represented by its vertices, which makes searching for
the outermost point on the bounding volume simple. We
find it is much faster if, during the search, instead of ac-
tually moving a parent bound’s vertices under the maps
of the IFS, if we simply move the search plane by the
inverse map and leave the vertices stationary.

5.2 Corners

Because unlike a sphere, our polyhedral bounding
hull has corners, it may not be possible to bound an IFS
by simply increasing the hull’s size. For example, con-
sider a single-map 2D IFS that consists of a 30-degree
rotation together with a very slight contraction. The
attractor for this IFS consists of a single point. How-
ever, no 4-sided hull can recursively bound this IFS,
because after rotation, the hull’s corners will always
stick out—see Figure 6. Increasing the size of the box
does not help, because rotation and scaling are scale-
independent.

Chu and Chen [5] suggest replacing such a problem-
atic IFS with an equivalent one that has more maps but
smaller contraction factors. They show that eventually
this process will lead to an IFS that can be bounded.
Instead, our solution to this corner problem is to add
sides—in this case, a 12-sided hull will match itself un-
der rotation, and can then be shrunk exactly to the at-

tractor.

(a) (b) (c)

Figure 6. For a one-map IFS, which rotates and slightly scales space,
the sphere bound (a) fits nicely; but the corners of a 4-sided box (b) will
never fit inside the box. The solution is to use a hull with more sides,
like the 12-sided hull in (c).

In 2D, if the angle between two hull corners isα, the
corners will never stick out if all the map contraction fac-
torssm satisfysm < cosα/2, as can be seen in Figure 7.
Rearranging this equation, we find if the largest contrac-
tion factor of any map iss, no corner will protrude if we
use at leasth = 2π/α > π

cos−1 s
sides.

α

s rm

r

Figure 7. Corners never stick out if sm < cosα/2.

For contraction factors very close to 1, this means we
may require an unaffordably large number of sides to
achieve any bound; but as we will show, in practice most
IFS only require a very small number of sides. Note that
simple translation does not cause this problem, because
translation is not scale-independent like rotation. For ex-
ample, a simple 1D IFS with maps that have a largest
scale factor ofs and largest shift ofd can always be
bounded by the interval[−L,L] for anyL≥ |d|/(1−s),
since then the map of the interval,[−sL+d,sL+d], will
lie within the interval because

|d|/(1−s) ≤ L

−d/(1−s)≤ L d/(1−s)≤ L

s−d/L≤ 1 s+d/L≤ 1

−L≤−sL+d sL+d≤ L.

5.3 Fixed normals

To implement the algorithm as a linear optimization
problem, we first choose fixed normal directions for the
faces of our convex hull. A natural choice in 2D, which
we have made, is to pick equally spaced directions. In
3D equally spaced normals are more difficult to choose,
but we can begin with, for example, the platonic solids.

It is often possible to find a slightly smaller hull via
a different choice of face normals, but the gains to be
found by optimizing over normal directions are not dra-
matic, and optimizing over normals is a nonlinear pro-
cess, so the refinement strategy described above appears
to be much more promising.

5.4 Fixed intersections

We must also pick the vertices on the convex hull
where faces intersect. In 2D, this is simple–every two
adjacent convex hull edges intersect at a hull vertex, and
any other edge intersections will lie outside the hull and
can be safely ignored. The only way the set of intersec-
tions can change is if three edges intersect at a point, in
which one of the edges vanishes; in this case we end up
checking the same point twice, but this causes no prob-
lems.

But in 3D, the set of boundary points is only well
defined when exactly three planes meet. In practice,
this simply means we are limited to 3D bounding hulls
in which every vertex is surrounded by exactly three
planes. This property is known as having vertex de-
gree three. For example, a 4-sided tetrahedra, 6-sided
cube, or 12-sided dodecahedron all have vertex degree
three and are useful bounding volumes. Neither octahe-
dra (vertex degree 4) nor icosahedra (vertex degree 5)
are useful bounding volumes, because their vertices are
not the simple intersection of three planes, and we have
to pick the set of surface vertices beforehand. We can
always truncate the vertices of any polyhedron to give
a new vertex degree three polyhedron—our implemen-
tation repeatedly truncates a tetrahedron or cube until
enough sides have been generated.

5.5 Bounding an RIFS attractor

The recurrent iterated function system (RIFS) is an
IFS whose maps are controlled by a digraphG whose
vertices correspond to the IFS maps. After applying map
i, we are only allowed to apply mapj if there is an edge
in the “control graph”G from nodei to nodej.

The attractor for a RIFS can be characterized as the
union of “attractorlets”A j [2]. Each attractorletA j is the
image of one or more attractorletsAi under the mapw j

where an edge fromi to j exists inG.

A coarse bound for an RIFS can be found by sim-
ply ignoring the control graphG, in effect convert-
ing the RIFS into an ordinary IFS. As usual, this re-
quires|M||I ||H| constraints. However, a tighter bound
can be obtained by independently bounding each of
the attractorlets with a separate convex bounding hull.
The constraints for such a system would look identi-
cal to the constraints seen previously, but since each
attractorlet must be bounded separately, this will re-
quire|M||H| unknowns (for the|M| attractorlets, each of
which is bounded using|H| halfspaces) and|M|2|I ||H|
constraints (because for the up to|M| maps of each of
the up to|M| attractorlets, each of the|I | intersections
must satisfy each of the|H| halfspaces).

6 Results

We implemented this convex optimization bounding
method for 2D and 3D IFS. We use a C++ program to
generate constraints for the widely available convex lin-
ear optimization library lpsolve [3]. In this section, we
examine the results and performance of this implemen-
tation of the method.

6.1 2D Example

Figure 8 shows the coarse bounding volume com-
puted by our implementation using just 8 sides, and the
much tighter bounding volume computed using 30 sides.
Both cases visually verify the optimality of the bounding
volume, in that any smaller volume with the same num-
ber and orientation of sides would not recursively bound
the attractor. Both bounding volumes also lie quite close
to the actual attractor.

Figure 9 compares out algorithm’s output with that of
the older sphere radius minimization technique.

6.2 3D Example

Figure 10 shows an important use of 3D bound-
ing volumes computed using this algorithm—to perform
raytracing on recursive procedural geometry. We use
the raytracing method of Hart and DeFanti [11], which
traces recursive geometry by instantiating the bounding
volume hierarchy on-the-fly.

Our implementation is reasonably fast, completing an
antialiased 500×500 rendering in under a minute on a
modern machine. Finding and refining a tight bound
takes under 100 milliseconds, so the bounding process
is not a significant bottleneck.

Figure 8. An IFS attractor, with an 8-sided (left) and a 30-sided (right) bounding volume computed by our algorithm.

Figure 9. On the left is a 3-map IFS and the 12-sided bounding volume computed by our algorithm. On the right is the much larger sphere bounding
volume computed by the older sphere radius minimization technique.

Figure 10. Two raytraced recursive models: on the left, a procedural tree with procedural leaves raytraced using the bounding volume generated by
our algorithm. On the right, a reflective Menger’s sponge bounded by a tight 6-sided hull.

Figure 11. On the left, a truncated cube bound (14 sides); on the
right, a twice-truncated tetrahedron bound (20 sides). Top row are the
unrefined recursive bounding volumes; bottom row are much smaller
refined bounding volumes. All four bounds can obtained and refined in
under a second.

6.3 Refinement

Bounding volume refinement, as described in Sec-
tion 5.1, can substantially reduce the size of recursive
bounding volumes. Examples of this for various choices
of bounding volume normals are shown in Figure 11.

6.4 Performance

Given an IFS withM maps, and a bounding volume
consisting ofI intersections betweenH halfspaces, we
will need exactlyMIH constraints, of the form given
in equation 2, andH unknowns. In 2D, the number of
intersections is equal to the number of halfspaces, so this
is O(MH2) constraints.

Although there exist polynomial-worst-case algo-
rithms for solving linear programs, such as the technique
of Karmarkar [14]; the package we used,lp solve, is
based on the well known exponential-worst-case sim-
plex method. This means our algorithm has a well-
defined upper limit, although in theory it may be expo-
nential in the number of bounding volume sides or IFS
maps.

The experimental relationship between the number of
sides and the run time is shown in Figure 13; the 2D
algorithm’s total run time appears to be approximately
O(H4.6), and the run time for the 3D algorithm is similar
for a similar number of sides. The 2D IFS for this test are
shown in Figure 12, except for “curlyq”, which is shown

Figure 12. Twelve 2D IFS’s, with a loose circle bound found by circle
optimization; and the much tighter bound obtained by our method.

0.001

0.01

0.1

1

10

100

1000

1 10 100

T
im

e
(s

)

Sides

sponge
3dragon
4dragon
5dragon
6dragon
bifurcate

curlyq
fern

holly
pine

serpinsky
spiral

vankoch

Figure 13. Log-log plot of the time to determine the optimal bound for a
variety of sides for a variety of 2D IFS. Runs on a 1.3 GHz AMD Athlon
PC running Linux.

in Figure 8. Very large numbers of sides are not compu-
tationally feasible at interactive rates; but about ten sides
can be computed very quickly. Luckily, as shown below,
more sides than this are rarely required.

The experimental relationship between the number of
sides and the area of the resulting hull is summarized
in Figure 14. Because we distribute the side normals
evenly, the area plot jumps up and down as useful nor-
mals are found and then passed by. As can be seen in the
plot, in practice a fairly small number of sides suffices
to bound most IFSs.

Finally, we compared the results of our bounding hull
with the bounding spheres of Rice and Hart. The test
was a 500x500 rendering of the tree scene shown in
Figure 10, without antialiasing (so the total number of
rays cast does not depend on the image), with a fixed
rendering depth of 10 levels (so the total amount of re-
cursive geometry does not vary), on a 1.6GHz Pentium-
M. Table 6.4 compares the raytracing time for the three

0

0.5

1

1.5

2

2.5

1 10 100

A
re

a
of

 H
ul

l

Sides

sponge
3dragon
4dragon
5dragon
6dragon
bifurcate

curlyq
fern

holly
pine

serpinsky
spiral

vankoch

Figure 14. Log-linear plot of the area of the bound found by the algo-
rithm for a variety of sides and a variety of 2D IFS.

Method Bound Refine Raytrace
Truncated Cube 49 ms 13 ms 8.2 s
Rice Sphere 22 ms - 8.63 s
Hart Sphere 14 us - 16.0 s

Table 1. Comparing raytracing times for different bounding methods.

methods. Although a ray-sphere intersection is much
faster than a ray-truncated cube intersection, the trun-
cated cube is a much tighter fit to the IFS and hence there
are many more ray-sphere intersections, making even
the best sphere-based methods slightly slower overall.
In practice, using an adaptive depth bound would tend
to favor even more the tighter bounding volumes found
by our method, because a looser sphere bound will have
to be more deeply instantiated to reach a given geomet-
ric resolution.

7 Conclusions

We have presented a simple algorithm based on con-
vex linear optimization for constructing a recursive con-
vex bounding volume for the attractor of an iterated
function system, and then refining that volume. The al-
gorithm is easy to implement, results in tight bounding
volumes, and runs at interactive rates for many iterated
function systems.

The algorithm can also be used to find bounding vol-
umes for other procedural models, such as the recurrent
iterated function system and the L-system. When ap-
plied to complex scenes, such as a dense forest of L-
system trees, the bounding volumes can be used to pri-
oritize the ordering of the trees and to thus eliminate the
unnecessary expense of evaluating an L-system to pro-
cedurally produce off-camera or obscured geometry.

7.1 Future Directions

While the equivalence of recurrent iterated function
systems and D0L-systems is well understood, there has
been little analysis of the geometry of more sophisti-
cated procedural models. General L-systems can con-
tain non-recursive features such as tropism, stochasti-
cism, and context sensitivity that currently elude au-
tomatic methods for bounding volume prediction. An
IFS can sometimes be constructed from the extremes
of these L-system productions, resulting in a worst-case
bound on the L-system size. If such an IFS can be found,
the bounding volumes described by this paper can be
used to bound general L-systems. Although we can cur-
rently construct such iterated function systems manu-
ally, an automatic technique would significantly extend
the state of the art in procedural modeling.

That is, modern procedural models have grown quite
complex, with numerous environmental influences that
can cause a procedural model to take on many differ-
ent shapes depending on the context within which it is
synthesized. Additional work on more accurately esti-
mating the extent of such geometry would lead to more
efficient procedural model rendering, and ultimately to
more complex scenes in computer graphics.

References

[1] M. F. Barnsley.Fractals Everywhere. Academic Press,
New York, 1988.

[2] M. F. Barnsley, J. H. Elton, and D. P. Hardin. Recurrent
iterated function systems.Constructive Approximation,
5:3–31, 1989.

[3] M. Berkelaar. Mixed integer linear pro-
gram solver lpsolve. Available from
ftp://ftp.ics.ele.tue.nl/pub/lp solve/.

[4] C. Bouville. Bounding ellipsoids for ray-fractal inter-
section.Computer Graphics, 19(3):45–51, 1985.

[5] H.-T. Chu and C.-C. Chen. On bounding boxes of iter-
ated function system attractors.Computers & Graphics,
27:407–414, 2003.

[6] S. Dubuc and A. Elqortobi. The support function of an
attractor.Numerical Functional Analysis and Optimiza-
tion, 14(3&4):323–332, 1993.

[7] S. Dubuc and R. Hamzaoui. On the diameter of the at-
tractor of an ifs.C.R. Math. Rep. Sci. Canada, (2,3):85–
90, 1994.

[8] D. Ebert, editor.Modeling and Texturing: A Procedural
Approach. Morgan-Kauffman, 3rd edition, Dec. 2002.

[9] A. Fournier, D. Fussel, and L. Carpenter. Computer
rendering of stochastic models.Communications of the
ACM, 25(6):371–384, June 1982.

[10] J. C. Hart. The object instancing paradigm for linear
fractal modeling. In Proc. ofGraphics Interface, pages
224–231. Morgan Kaufmann, 1992.

[11] J. C. Hart and T. A. DeFanti. Efficient antialiased ren-
dering of 3-D linear fractals.Computer Graphics, 25(3),
1991.

[12] J. Hutchinson. Fractals and self-similarity.Indiana Uni-
versity Mathematics Journal, 30(5):713–747, 1981.

[13] J. T. Kajiya. New techniques for ray tracing procedu-
rally defined objects.ACM Transactions on Graphics,
2(3):161–181, 1983. Also appeared inComputer Graph-
ics 17,3 (1983), 91–102.

[14] N. Karmarkar. A new polynomial-time algorithm for lin-
ear programming.Combinatorica, 4:373–396, 1984.

[15] T. Martyn. Tight bounding ball for affine ifs attractor.
Computers & Graphics, 27:535–552, 2003.

[16] P. Prusinkiewicz and M. Hammel. Language restricted
iterated function systems, Koch constructions and L-
systems. In J. C. Hart, editor,New Directions for Frac-
tal Modeling in Computer Graphics, pages 4–1 – 4–14.
SIGGRAPH ’94 Course Notes, July 1994.

[17] P. Prusinkiewicz and A. Lindenmayer.The Algorithmic
Beauty of Plants. Springer-Verlag, New York, 1990.

[18] P. Prusinkiewicz, A. Lindenmayer, and J. Hanan. De-
velopmental models of herbaceous plants for computer
imagery purposes.Computer Graphics, 22(4):141–150,
August 1988.

[19] J. Rice. Spatial bounding of self-affine iterated function
system attractor sets. InGraphics Interface, pages 107–
115, May 1996.

[20] A. R. Smith. Plants, fractals, and formal languages.
Computer Graphics, 18(3):1–10, July 1984.

A Linear Constraints Code

This piece of C++ code converts the maps of an IFS
into a set of linear constraints that require this bounding
hull be a recursive bound—that is, that the bound con-
tains its images under each IFS map.

The unknowns for the linear optimizer will be the dis-
placements for each halfspace of our bounding hull. If
our normals face outward, then a useful objective func-
tion is to minimize the sum of the displacements; this
is implemented by adding as the linear optimizer’s ob-
jective function a long vector consisting of all 1’s that
will then be dotted with the vector of unknown displace-
ments.

In addition to the number of unknowns and the ob-
jective function, the only other item required by the lin-
ear optimizer will be the constraints on the unknowns,
which are produced by this function. If the linear opti-
mizer requires the unknowns to have only positive val-
ues, as discussed in Section 4.2 the IFS maps must be
shifted so the coordinate system (and hence displace-
ment) origin will lie within the output hull, then the re-
sulting displacements shifted back after running the lin-
ear optimizer.

The inputs to the routine are the maps of an IFS,
in the form of a set of affine (translation-free) matri-
ces and shift vectors representing the maps; the normals
to the halfspaces of the bounding hull; the topology of
the bounding hull in the form of a list of the normals
that intersect to form each corner; the number of spa-
tial dimensions; and finally the linear solver to which
we will add the constraints. This is essentially a direct
implementation of the constraints listed mathematically
in Equation 2.

void recursiveBoundConstraints(
int nMaps,// Number of IFS maps
const Matrix w[],const Vector shift[],
int nNormals,const Vector normals[],
int nCorners,const int corners[][],
int nDimensions, // Spatial dimensions
LinearSolver &solver
)

{
int c,m,s,a;

//Constraints:
for (c=0;c<nCorners;c++)
for (m=0;m<nMaps;m++)
for (s=0;s<nNormals;s++)
{
// Faces with indices listed in corners[c]
// all intersect to define this corner.
Matrix N;
for (a=0;a<nDimensions;a++)
setRow(N,a, normals[corners[c][a]]);

// Prepare this linear solver constraint:
std::vector<double> disp(nNormals,0.0);

// d_s term, rearranged as -d_s:
disp[s]-=1;

// n_s dot W_m N_ijˆ-1 term:
Matrix M=w[m]*N.inverse();
for (a=0;a<nDimensions;a++)
disp[corners[c][a]]+=

dot(normals[s],getCol(M,a));

// n_s dot (... s_m) term, rearranged:
double lowerBound=

-dot(normals[s],shift[m]);

solver.addConstraint(disp,lowerBound);
}

}

