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Abstract. Let G be a graph with an ordered set of vertices and maximum
degree ∆. The domination number γ(G) of G is the minimum order of a set
S of vertices such that each vertex not in S is adjacent to some vertex in
S. Equivalently, we can label the vertices from {0, 1} so that the sum over
each closed neighborhood is at least one; the minimum value of the sum of
all labels, with this restriction, is the domination number. The fractional
domination number γ∗(G) is defined in the same way except that the vertex
labels are chosen from [0, 1]. Let γg(G) be the approximation of the domination
number by the standard greedy algorithm. Computing the domination number
is NP-complete; however, we can bound γ by these two more easily computed
parameters:

γ∗(G) ≤ γ(G) ≤ γg(G).

How good are these approximations? Using techniques from the theory of
hypergraphs, one can show that, for every graph G of order n,

γg(G)

γ∗(G)
= O(log n).

On the other hand, we provide examples of graphs for which γ/γ∗ = Θ(log n)
and graphs for which γg/γ = Θ(log n). Lastly, we use our examples to compare
two bounds on γg .

In the following, G will represent a finite, simple, undirected graph. We denote
by δ(G) and ∆(G) the minimum and maximum degree of G, respectively. We use
N [v] to denote the closed neighborhood of a vertex v. The closed neighborhood of a
sequence of vertices, e.g., N [v1, v2, . . . , vk], is the union of the closed neighborhoods
of the vertices in the sequence. We denote the domination number of G by γ(G).
See [9] for an introduction to domination in graphs and definitions of graph-theoretic
terms.

We may consider a dominating set as a 0, 1-weighting of the vertex set so that,
in each closed neighborhood, the sum of the weights is at least one. Relaxing
the requirement that the weights be integers, we obtain a fractional version of the
domination number. Suppose we assign weight f(v) ∈ [0, 1] to each vertex v. The
function f : V (G) → [0, 1] is a fractional domination if for each vertex v,

∑

u∈N [v]

f(u) ≥ 1.

The fractional domination number γ∗(G) of G is the minimum sum of the vertex
weights, taken over all fractional dominations of G.
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A useful bound is the following, which was discovered independently and appears
in [4, 8].

Lemma 1. For a graph G of order n,

n

1 + ∆(G)
≤ γ∗(G) ≤ n

1 + δ(G)
. ¤

Throughout this paper, we will implicitly assume an ordering on the vertex set
of a graph. Given such an ordering, we can approximate the domination number
using a greedy algorithm, as follows. Iteratively select vertices x1, x2, . . . , xm so
that, for each k = 1, 2, . . . ,m, vertex xk is chosen so that it dominates as many ver-
tices of V (G)−N [x1, x2, ..., xk−1] (that is, not-yet-dominated vertices) as possible.
Resolve ties by choosing xk as early as possible in the ordering on V (G). Stop the
iterative process when every vertex is dominated by one of the xk’s. We refer to
x1, x2, . . . , xm as the greedy dominating sequence. The greedy domination number
γg(G) = m is the number of vertices in this sequence.

Determining the domination number of a general graph is known to be NP-
complete (see [7]); it is natural to seek more easily computed approximations. The
values of γ∗ and γg can be determined in polynomial time. Further, the fact that
γ lies in the interval [γ∗, γg] follows easily from definitions.

Observation 2. For every graph G,

γ∗(G) ≤ γ(G) ≤ γg(G). ¤

We study the relationships of these three parameters further.
Techniques from the theory of hypergraphs can be used to show that the ra-

tio γg(G)/γ∗(G) is O(log ∆), and thus O(log n), where n is the order of G; see
Theorem 4, below. Thus γ(G) must lie within a relatively small interval. We pro-
duce examples showing that, asymptotically, we can do no better. We show that
γ(G)/γ∗(G) can be Θ(log n), and then we show that γg(G)/γ(G) can be Θ(log n).

Since γg is a useful upper bound on γ, it is worthwhile to consider upper bounds
on γg. One such bound follows immediately from the above discussion:

γg(G) ≤ cγ∗(G) log n,

for some constant c, where n is the order of G. Another class of bounds are those
in which γg is bounded above by a constant multiple of n log δ/δ. The first of these
is found in [1] (see their Theorem 2.2 and the remarks following it). A slightly
improved bound is given in [3, Thm. 2]; we state this below.

Theorem 3 (Clark, Shekhtman, Suen, and Fisher [3]). For every graph G of order
n,

γg(G) ≤ n

[
1−

δ+1∏

i=1

iδ

iδ + 1

]
,

where δ = δ(G). ¤

We note that the right side of the above inequality is Θ(n log δ/δ). We will
compare these two bounds on γg, using examples to show that sometimes one is
tighter, and sometimes the other is.
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In the following result, we will use a concept dual to fractional domination. A
function f : V (G) → [0, 1] is a fractional packing if for each vertex v,

∑

u∈N [v]

f(u) ≤ 1.

Note that the maximum total weight of V (G), taken over all fractional packings,
and the minimum total weight of V (G), taken over all fractional dominations, are
described by dual linear programs (see [9, Chapter 4] or [4, Section 3]). Thus, by
the principle of strong duality, given a fractional packing on a graph G, the total
weight of the vertex set is at most γ∗(G).

We now prove an upper bound on γg(G)/γ∗(G). This is a special case of a more
general result on vertex covers of hypergraphs and is similar to a bound found
in [10, 11] (see also [14, Thm. 77.2]).

Theorem 4. For every graph G,

γg(G)
γ∗(G)

≤ 1 + ln
[
1 + ∆(G)

]
.

Proof. Set m = γg(G). Let x1, x2, . . . , xm be the greedy dominating sequence. For
each vertex v of G, let g(v) be the first vertex in the greedy dominating sequence
that dominates v. Let F (v) be the set of all vertices of G that are first dominated
by g(v); that is, F (v) = N [xk]−N [x1, x2, . . . , xk−1], where xk = g(v). Let w(v) =

1
|F (v)| . So w(v) is the reciprocal of the number of vertices that are dominated in
the same step of the greedy algorithm as v. Note that

∑
u∈F (v) w(u) = 1, and thus∑

v∈V (G) w(v) = m.
Our proof is based on that of [14, Thm. 77.2], and proceeds as follows. We

assign weight w(v) to each vertex v. We find upper bounds on the weights of
vertices lying in a closed neighborhood, and conclude that, if each vertex v is given
weight w(v)/

(
1 + ln

[
1 + ∆(G)

])
, then the result is a fractional packing. Applying

linear programming duality, we then obtain a lower bound on γ∗(G), from which
our result follows.

Let v be a vertex of G. We list the elements of N [v] in the order in which they
were dominated in the greedy algorithm. Letting p = 1+deg(v), we represent N [v]
as {u1, u2, . . . , up}, where, if g(ui) comes before g(uj) in the greedy dominating
sequence, then i < j.

We claim that w(ui) ≤ 1
p+1−i for each ui. Suppose that |F (ui)| < p + 1 − i,

for some ui. Then |F (ui)| < |{ui, ui+1, . . . , up}|, and so replacing g(ui) by v in the
greedy dominating sequence would increase the number of vertices dominated at
this step in the greedy algorithm. However, this contradicts the definition of greedy
dominating sequence, and so |F (ui)| ≥ p + 1− i. Thus,

w(ui) =
1

|F (ui)| ≤
1

p + 1− i
,

as claimed.
Hence, for each vertex v we have,

∑

u∈N [v]

w(u) ≤
p∑

i=1

1
p + 1− i

=
p∑

i=1

1
i
≤ 1 + ln p ≤ 1 + ln

[
1 + ∆(G)

]
,
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Dividing by 1 + ln
[
1 + ∆(G)

]
, we obtain

∑

u∈N [v]

w(u)
1 + ln [1 + ∆(G)]

≤ 1,

and so assigning weight w(v)/
(
1 + ln

[
1 + ∆(G)

])
to each vertex v, results in a

fractional packing. Therefore, as noted before the statement of the theorem, the
sum of all vertex weights is bounded above by γ∗(G). That is,

∑

v∈V (G)

w(v)
1 + ln [1 + ∆(G)]

≤ γ∗(G).

Multiplying by 1 + ln
[
1 + ∆(G)

]
, we obtain

γg(G) = m =
∑

v∈V (G)

w(v) ≤ (
1 + ln

[
1 + ∆(G)

])
γ∗(G).

Dividing by γ∗(G) yields our result. ¤

Hence the following.

Corollary 5. For any graph G of order n with maximum degree ∆ ≥ 2

γ(G) ≤ c1 ln(∆)γ∗(G)

and
γ(G) ≤ c2 ln(n)γ∗(G),

where c1 and c2 are appropriately chosen constants. ¤
The preceding theorem and corollary place restrictions on the value of γ. We

now show that these restrictions are asymptotically best possible up to a constant
factor. We begin with a construction of a family of graphs in which γ lies near the
high end of the interval [γ∗, γg]. Later, we will obtain better results using random
graphs.

Example 6. Given a positive integer t, we construct a graph Jt of order n =
(2t)2t−1 so that

γ(Jt) = 2t = Θ
(

log n

log log n

)
,

and
γ∗(Jt) = e + o(1) = Θ(1).

Let t be a positive integer. Set d = 2t − 1 and n = (2t)d. Let G be the graph
K2t − tK2 (that is, K2t with a matching removed). Let Jt be the graph whose
vertices are d-tuples of the form (x1, x2, . . . , xd) where each xi is a vertex in G.
Let vertices (x1, x2, . . . , xd) and (y1, y2, . . . , yd) be adjacent in Jt if for each i, the
vertices xi and yi are equal or adjacent in G. (The way in which Jt is constructed
from G is often called the “strong [direct] product”.) We note that Jt has order n.

We show that Jt has the required properties. For each vertex v of G, denote by
v the unique vertex in G that is not adjacent to v.

Let S be a set of d vertices of Jt. We write S =
{(

xi
1, x

i
2, . . . , x

i
d

) | i = 1, 2, . . . , d
}
.

Let u =
(
x1

1, x
2
2, . . . , x

d
d

)
. Then u is not adjacent to any vertex in S, and so S is

not a dominating set. Hence, the domination number of Jt is at least d + 1. Now
let A be the set of all vertices in Jt of the form (v, v, v, . . . , v) where v is a vertex
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in G. Since there are d + 1 such vertices, but only d coordinates, every vertex of
Jt must be dominated by at least one vertex of A. Thus, A is a dominating set of
size d + 1, and so γ(J) = d + 1 = 2t.

Note that Jt is regular of degree (2t− 1)d − 1. By Lemma 1,

γ∗(Jt) =
n

(2t− 1)d
=

(d + 1)d

dd
= e + o(1). ¤

For the graph Jt of Example 6, γ/γ∗ = Θ(log n/ log log n). This ratio is not as
high as we would like. Better examples are provided by random graphs, for which
γ/γ∗ is, with high probability, Θ(log n).

Given a natural number n, let Rn be a random graph on n labeled vertices with
edge probability 1/2. Given a graphical property P we say that Rn almost surely
(a.s.) has P if the probability that Rn has P goes to one as n approaches infinity.
See [13] for an introduction to random graphs.

It is known (see [5, 15, 16]) that the domination number of Rn is almost surely
Θ(log n). We give a short proof below.

Theorem 7. Almost surely,

γ∗(Rn) = 2 + o(1)

and
γ(Rn) = log2 n + o(log n). ¤

Proof. From [6] we know a.s.
(
1− o(1)

)n

2
≤ δ(Rn) ≤ ∆(Rn) ≤ (

1 + o(1)
)n

2
.

Applying Lemma 1 we see that a.s. γ∗(Rn) = 2 + o(1).
From [2, 12] we know the independence number of Rn is a.s. log2 n + o(log n).

Hence, a.s. γ(Rn) ≤ log2 n + o(log n). Fix ε so that 0 < ε < 1. Set p =
b(1− ε) log2 nc. Let S be a subset of V (G) with order p. If v is a vertex not
in S then the probability that S dominates v is 1 − (

1
2

)p. Hence, the probability

that S dominates Rn is
[
1− (

1
2

)p]n−p
. Let E be the expected number of p-sets

that dominate Rn. Then,

E =
(

n

p

)[
1−

(
1
2

)p]n−p

≤ npe−(1/2)p(n−p)

≤ ep ln(n)−(n/n1−ε)ep/n1−ε

≤ cep ln(n)−nε

,

for some constant c. But the last expression goes to zero. Hence, Rn a.s. has no
dominating p-set. This leads to the desired result. ¤

Letting Gn = Rn, we obtain the following.

Corollary 8. There exist graphs Gn, for infinitely many integers n, so that each
Gn has order n, and

γ(Gn)
γ∗(Gn)

= Θ(log n). ¤
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Thus, the bounds in Corollary 5 are asymptotically best possible. We have
proven this using probabilistic methods; we ask whether an explicit construction
can be found.

Problem 9. Find an explicit construction of graphs Gn, for infinitely many integers
n, so that each Gn has order n, and

γ(Gn)
γ∗(Gn)

= Θ (log n) . ¤

We have seen that γg/γ∗ is O(log n), and that the ratio γ/γ∗ may be Θ(log n).
In our next example the ratio γg/γ is Θ(log n). Thus, γ is near the low end of the
interval [γ∗, γg], and the greedy algorithm approximates the domination number
relatively poorly.

Example 10. Given an integer t ≥ 4, we construct a graph Ht of order n = 2t+2

so that
γ∗(Ht) = γ(Ht) = 4

and
γg(Ht) = t.

Let t ≥ 4 be a natural number. Let u1, u2, u3, u4 be vertices and set S =
{u1, u2, u3, u4}. To construct Ht, begin with the union of S and t disjoint cliques:

S ∪ [
K4 ∪K8 ∪K16 ∪ · · · ∪K2·2t

]
.

Add additional edges so that each vertex of S is adjacent to one quarter of the
vertices in each clique, and no two vertices of S have any common neighbors. Let
Ht be the resulting graph. We note that the order of Ht is

4 + 4
[
1 + 2 + 4 + · · ·+ 2t−1

]
= 2t+2.

If we approximate γ(Ht) with the greedy algorithm, we will never choose any
vertex in S. The greedy dominating sequence will contain one vertex from each of
the cliques used to construct Ht. Since t ≥ 4 the first four such vertices chosen will
dominate the four vertices in S, and so γg(Ht) = t.

Given a fractional domination of Ht, the total weight of the vertices in each
N [ui] is at least 1. Since the sets N [u1], N [u2], N [u3], N [u4] are disjoint, we have
γ∗(Ht) ≥ 4. On the other hand, S dominates Ht, and so γ(Ht) ≤ 4. Thus,

4 ≤ γ∗(Ht) ≤ γ(Ht) ≤ 4,

and so γ∗(Ht) = γ(Ht) = 4. ¤

Letting n = 2t+2, and letting Gn be Ht from the above example, we obtain the
following.

Corollary 11. There exist graphs Gn, for infinitely many integers n, so that each
Gn has order n, and

γg(Gn)
γ(Gn)

= Θ(log n). ¤

We now consider upper bounds on γg. By Theorem 4 we have, for a graph G of
order n,

(1) γg(G) ≤ c1γ
∗(G) log n,
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for some constant c1. And by Theorem 3, we have

(2) γg(G) ≤ c2
n log δ(G)

δ(G)
,

for some constant c2.
Consider these bounds for the graph Ht from Example 10. We have γ∗(Ht) = 4,

and clearly δ(Ht) = 4. Thus, letting n be the order of Ht, the right-hand side of (1)
is Θ(log n), while the right-hand side of (2) is Θ(n), making (1) by far the tighter
bound.

On the other hand, let t be a positive integer, and let G be a t-clique with a
pendant vertex joined to each clique vertex (a “hairy clique”). Letting n be the
order of G, we have γ∗(G) = t = n/2, and δ(G) = 1. Thus, the right-hand side
of (1) is Θ(n log n), while the right-hand side of (2) is Θ(n), making (2) the tighter
bound.
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[2] B. Bollobás and P. Erdős, Cliques in random graphs, Math. Proc. Cambridge Philos. Soc. 80

(1976), no. 3, 419–427.
[3] W. E. Clark, B. Shekhtman, S. Suen, and D. Fisher, Upper bounds for the domination number

of a graph, Congr. Numer. 132 (1998), 99–123.
[4] G. S. Domke, S. T. Hedetniemi, and R. C. Laskar, Fractional packings, coverings, and irre-

dundance in graphs, Congr. Numer. 66 (1988), 227–238.
[5] P. A. Dreyer, Applications and Variations of Domination in Graphs, Ph.D. Dissertation,

Dept. of Mathematics, Rutgers University, 2000.
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